Claim Missing Document
Check
Articles

Found 23 Documents
Search

Dinamik Model Epidemi SIRS dengan Laju Kematian Beragam Ni’matur Rohmah; Wuryansari Muharini Kusumawinahyu
Jurnal Matematika Integratif Vol 10, No 1: April, 2014
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (426.84 KB) | DOI: 10.24198/jmi.v10.n1.10101.1-8

Abstract

Pada artikel ini dibahas model epidemi
Analisis Dinamik Model Penyebaran Aflatoksin pada Manusia dan Hewan Wuryansari Muharini Kusumawinahyu; Yuni Ayu Anita
Jurnal Matematika Integratif Vol 16, No 1: April 2020
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (373.572 KB) | DOI: 10.24198/jmi.v16.n1.27492.41-51

Abstract

Pada penelitian ini dibahas suatu model yang menggambarkan perubahan konsentrasi aflatoksin pada tanaman, hewan, dan manusia, yang menyebar melalui makanan dan pakan ternak yang berasal dari tanaman. Pada model yang berupa sistem autonomus ini dilakukan analisis dinamik yang meliputi penentuan titik kesetimbangan, syarat eksistensi titik kesetimbangan, angka reproduksi dasar, dan analisis kestabilan lokal titik kesetimbangan. Hasil analisis dinamik menunjukkan bahwa model memiliki empat titik kesetimbangan dan dua angka reproduksi dasar. Tiga titik kesetimbangan eksis dengan syarat tertentu. Kestabilan titik kesetimbangan aksial bergantung pada angka reproduksi dasar, sedangkan titik kesetimbangan interior selalu stabil asimtotik lokal bila ia eksis. Hasil simulasi numerik yang dilakukan mendukung hasil analisis dinamik.
The Dynamics of a Predator-Prey Model Involving Disease Spread In Prey and Predator Cannibalism Ah, Nurul Imamah; Kusumawinahyu, Wuryansari Muharini; Suryanto, Agus; Trisilowati, Trisilowati
Jambura Journal of Biomathematics (JJBM) Volume 4, Issue 2: December 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjbm.v4i2.21495

Abstract

In this article, dynamics of predator prey model with infection spread in prey and cannibalism in predator is analyzed. The model has three populations, namely susceptible prey, infected prey, and predator. It is assumed that there is no migration in both prey and predator populations. The dynamical analysis shows that the model has six equilibria, namely the trivial equilibrium point, the prey extinction point, the disease free and predator extinction equilibrium point, the disease-free equilibrium point, the predator extinction equilibrium point, and the coexistence equilibrium point. The first equilibrium is unstable, and the other equilibria conditionally local asymptotically stable. The positivity and boundedness of the solution are also shown. The analytical result is supported by numerical simulation. It is shown that in such a high cannibalization the coexistence equilibrium is locally asymptotically stable.
Dynamical Analysis of Discrete-Time Modified Leslie-Gower Predator-Prey with Fear Effect Purnomo, Anna Silvia; Darti, Isnani; Suryanto, Agus; Kusumawinahyu, Wuryansari Muharini
JTAM (Jurnal Teori dan Aplikasi Matematika) Vol 9, No 1 (2025): January
Publisher : Universitas Muhammadiyah Mataram

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31764/jtam.v9i1.26515

Abstract

It has been studied that fear plays a significant role in establishing ecological communities, influencing biodiversity, and preserving ecological balance in predator-prey interactions. In this study, it is proposed a discrete-time predator-prey model that takes the fear effect into account that is derived by using Euler method. Objective of this study is analyzing the model by linearization. Similar to the continuous model properties, the trivial fixed point and the predator-free fixed point are both unstable. The discrete model differs from the continuous model in that the stability of the interior fixed point and the free prey fixed point is affected by the time step size. Using numerical methods, we examine period-doubling bifurcations related to interior fixed point and prey-free point that are impacted by time step size.
Advanced cervical cancer classification: enhancing pap smear images with hybrid PMD filter-CLAHE Khozaimi, Ach; Darti, Isnani; Anam, Syaiful; Kusumawinahyu, Wuryansari Muharini
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp644-655

Abstract

Cervical cancer remains a significant health problem, especially in developing countries. Early detection is critical for effective treatment. Convolutional neural networks (CNN) have shown promise in automated cervical cancer screening, but their performance depends on pap smear image quality. This study investigates the impact of various image preprocessing techniques on CNN performance for cervical cancer classification using the SIPaKMeD dataset. Three preprocessing techniques were evaluated: PeronaMalik diffusion (PMD) filter for noise reduction, contrast-limited adaptive histogram equalization (CLAHE) for image contrast enhancement, and the proposed hybrid PMD filter-CLAHE approach. The enhanced image datasets were evaluated on pretrained models, such as ResNet-34, ResNet-50, SqueezeNet-1.0, MobileNet-V2, EfficientNet-B0, EfficientNet-B1, DenseNet121, and DenseNet-201. The results show that hybrid preprocessing PMD filter-CLAHE can improve the pap smear image quality and CNN architecture performance compared to the original images. The maximum metric improvements are 13.62% for accuracy, 10.04% for precision, 13.08% for recall, and 14.34% for F1-score. The proposed hybrid PMD filter-CLAHE technique offers a new perspective in improving cervical cancer classification performance using CNN architectures.
Pengaruh Amplitudo dan Frekuensi terhadap Fenomena Pemuncakan Wuryansari Muharini Kusumawinahyu
Limits: Journal of Mathematics and Its Applications Vol. 3 No. 2 (2006): Limits: Journal of Mathematics and Its Applications Volume 3 Nomor 2 Edisi Nove
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Telah diketahui bahwa suatu signal bikromatik yang diberikan sebagai masukan di pembangkit gelombang di laboratorium hidrodinamika mengalami fenomena pemuncakan ketika ia merambat di sepanjang kolam pengujian. Dengan memanfaatkan besaran yang disebut Maximal Temporal Amplitude (MTA), dikaji pengaruh amplitudo dan frekuensi selubung signal gugus gelombang di pembangkit gelombang terhadap faktor ampli kasi dan posisi terjadinya elevasi maksimum. Data untuk penyelidikan ini dibangkitkan dengan menggunakan suatu simulasi numerik pembangkitan dan perambatan gelombang di sepanjang kolam pengujian dua dimensi. Hasil yang diperoleh dibandingkan dengan hasil yang diperoleh secara analitik menggunakan aproksimasi orde ke tiga persamaan KdV.
Analisis Dinamik Model Hepatitis B dengan Sirosis Hati Muna Afdi Muniroh; Trisilowati; Wuryansari Muharini Kusumawinahyu
Limits: Journal of Mathematics and Its Applications Vol. 19 No. 1 (2022): Limits: Journal of Mathematics and Its Applications Volume 19 Nomor 1 Edisi Me
Publisher : Pusat Publikasi Ilmiah LPPM Institut Teknologi Sepuluh Nopember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Hepatitis B adalah suatu penyakit peradangan pada organ hati yang memiliki dua fase infeksi yaitu akut dan kronis. Sirosis hati terjadi akibat terbentuknya jaringan parut pada individu hepatitis B berkepanjangan (kronis). Oleh karena itu, pada penelitian ini dibentuk model penyebaran penyakit hepatitis B dengan sirosis hati. Selain itu, pada model diasumsikan virus hepatitis B (HBV) dapat ditularkan baik secara vertikal maupun horizontal. Analisis dinamik dilakukan untuk menentukan eksistensi dan kestabilan titik kesetimbangan. Berdasarkan hasil analisis dinamik, diperoleh dua titik kesetimbangan yaitu titik kesetimbangan bebas penyakit dan titik kesetimbangan endemik. Angka reproduksi dasar (R0) didapatkan dengan menggunakan matriks generasi selanjutnya. Titik kesetimbangan bebas penyakit eksis tanpa syarat, sedangkan titik kesetimbangan endemik eksis ketika R0>1 . Hasil analisis kestabilan menunjukkan bahwa titik kesetimbangan bebas penyakit dan endemik bersifat stabil asimtotik lokal jika kriteria Routh-Hurwitz terpenuhi. Selain itu, titik kesetimbangan bebas penyakit bersifat stabil asimtotik global jika R0<1 dan titik kesetimbangan endemik bersifat stabil asimtotik global jika memenuhi kondisi tertentu. Simulasi numerik mendukung hasil analisis yang telah diperoleh.
Model of Three Species Commensalism-Amensalism Symbiosis with Beddington-DeAngelis Functional Responses Shofiyya, Nada; Kusumawinahyu, Wuryansari Muharini; Habibah, Ummu
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.36718

Abstract

This study investigates the dynamical behavior of a three species ecological system involving unilateral interactions of commensalism and amensalism with Beddington–DeAngelis functional responses. The positivity, boundedness, existence, and uniqueness of the model solutions are established, and four equilibrium points are identified. Stability analysis shows that the coexistence equilibrium point and the neutral species only equilibrium point are locally asymptotically stable, whereas the other equilibria are always unstable. Numerical simulations are conducted to confirm the analytical findings. Ecologically, the results indicate that stability can be achieved only when all neutral species coexist, even though without the commensal–amensal species. In contrast, the commensal-amensal species cannot persist without the presence of all neutral species.
Dynamics of Covid-19 model with public awareness, quarantine, and isolation Syafitri, Risyqaa; Trisilowati, Trisilowati; Kusumawinahyu, Wuryansari Muharini
Jambura Journal of Biomathematics (JJBM) Volume 4, Issue 1: June 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjbm.v4i1.19832

Abstract

This paper presents a new COVID-19 model that contains public awareness, quarantine, and isolation. The model includes eight compartments: susceptible aware (SA), susceptible unaware (SU), exposed (E), asymptomatic infected (A), symptomatic infected (I), recovered (R), quarantined (Q), and isolated (J). The introduction will be shown in the first section, followed by the model simulation. The equilibrium points, basic reproduction number, and stability of the equilibrium points are then determined. The model has two equilibrium points: disease-free equilibrium point and endemic equilibrium point. The next-generation matrix is used to calculate the basic reproduction number R0. The disease-free equilibrium point always exists and is locally stable if R0 1, whereas the endemic equilibrium point exists when R0 1 and is locally stable if satisfying the Routh-Hurwitz criterion. Stability properties of the equilibrium confirmed by numerical simulation also show that quarantine rate and isolation rate have an impact in the transmission of COVID-19
Bifurcation Analysis of a Discrete Logistic System with Additive Allee Effect and Feedback Control Hadinata, Nadia Agus; Suryanto, Agus; Kusumawinahyu, Wuryansari Muharini
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 9, No 2 (2024): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/ca.v9i2.26674

Abstract

A discrete logistic system with addition Allee effect and feedback control is analyzed in this paper. The results of the analysis show that the model has a trivial fixed point and interior fixed point. The results of our stability analysis show that there are topological differences that depend on the step size. Bifurcation analysis is performed by using the center manifold theory and the bifurcation theorem. By taking the step size as a bifurcation parameter, we show that the model may go through a period-doubling and Neimark-Sacker bifurcations. Some numerical simulations are performed to confirm the result of the analysis.