Teddy Surya Gunawan
International Islamic University Malaysia

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

The Disruptometer: An Artificial Intelligence Algorithm for Market Insights Nordin, Mimi Aminah binti Wan; Vedenyapin, Dmitry; Alghifari, Muhammad Fahreza; Gunawan, Teddy Surya
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i2.1494

Abstract

Social media data mining is developing to be a mainstream tool for marketing insights in today’s world, due to the abundance of data and often freely accessed information. In this paper, we propose a framework for market research purposes called the Disruptometer. The algorithm uses keywords to provide different types of market insights from data crawling. The preliminary algorithm data-mines information from Twitter and outputs 2 parameters – Product-to-Market Fit and Disruption Quotient, which is obtained from a brand’s customer value proposition, problem space, and incumbent space. The algorithm has been tested with a venture capitalist portfolio company and market research firm to show high correlated results. Out of 4 brand use cases, 3 obtained identical results with the analysts ‘studies.
A novel optimization harmonic elimination technique for cascaded multilevel inverter Aboadla, Ezzidin Hassan; Khan, Sheroz; Habaebi, Mohamed H.; Gunawan, Teddy Surya; Hamida, Belal A.; Yaacob, Mashkuri Bin; Aboadla, Ali
Bulletin of Electrical Engineering and Informatics Vol 8, No 2: June 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v8i2.1500

Abstract

The main goal of utilizing Selective Harmonic Elimination (SHE) techniques in Multilevel Inverters (MLI) is to produce a high-quality output voltage signal with a minimum Total Harmonic Distortion (THD). By calculating N switching angles, SHE technique can eliminate (N-1) low order odd harmonics of the output voltage waveform. To optimized and obtained these switching angles, N of nonlinear equations should be solved using a numerical method. Modulation index (m) and duty cycle play a big role in selective harmonic elimination technique to obtain a minimum harmonic distortion and desired fundamental component voltage. In this paper, a novel Optimization Harmonic Elimination Technique (OHET) based on SHE scheme is proposed to re-mitigate Total Harmonic Distortion. The performance of seven-level H-bridge cascade inverter is evaluated using PSIM and validated experimentally by developing a purposely built microcontroller-based printed circuit board.