Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Intechno Journal : Information Technology Journal

EEG Emotion Recognition using Deep Neural Network (DNN) in Virtual Reality Environments Agastya, I Made Artha; Marco, Robert; Handayani, Dini Oktarina Dwi
Intechno Journal : Information Technology Journal Vol. 6 No. 2 (2024): December
Publisher : Universitas Amikom Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24076/intechnojournal.2024v6i2.1903

Abstract

Purpose: The purpose of this study is to explore the integration of EEG technology with virtual reality (VR) systems to enhance therapeutic interventions, improve cognitive state recognition, and develop personalized immersive experiences. Specifically, it investigates the classification of EEG signals in a VR environment using machine learning models and identifies the most effective methods for individual-level analysis.Methods: The study utilized EEG data collected from 31 participants using the Muse 2016 headset, with electrodes positioned according to the 10-20 international system. EEG signals were analyzed for features such as statistical metrics (mean, median, standard deviation, skewness, and kurtosis) and Hjorth parameters (activity, mobility, complexity). Machine learning models, including K-Nearest Neighbors (KNN), Random Forest (RF), and Support Vector Machine (SVM), were evaluated for their performance in classifying emotional and cognitive states in a VR environment. Result: The results indicate that the Deep Neural Network (DNN) outperformed SVM and KNN models, achieving the highest average classification accuracy. SVM demonstrated consistent performance, with accuracy values consistently above 0.8 across subjects, while KNN showed greater variability and lower overall performance. DNN's architecture, incorporating two hidden layers with ReLU activation and a softmax output layer, demonstrated superior capability in modeling complex EEG patterns. The findings emphasize the effectiveness of DNN in handling high-dimensional and non-linear data, particularly for multi-class classification tasks.Novelty: This study is novel in its focus on personalized machine learning model performance in a VR-EEG setup. Instead of a one-size-fits-all approach, it emphasizes individualized analysis, identifying the most effective model for each participant.