Lamidi Lamidi
Department of Medical Electronics Technology, Poltekkes Kemenkes Surabaya

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

Analysis of the Geiger Muller Ability on the Effect of Collimation Area and Irradiation Distance on the Dose of X-Ray Machine Measurements Wahyu Pratama; Muhammad Ridha Mak'ruf; Tri Bowo Indrato; Endro Yulianto; Lamidi Lamidi; Maduka Nosike; Sambhrant Srivastava
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 3 (2022): July
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i3.249

Abstract

Radiation cannot be felt directly by the five human senses. For the occupational safety and security, a radiation worker or radiographer is endeavored to receive radiation dose as minimum as possible, which is by monitoring the radiation using a radiation measuring device. The purpose of this study was to analyze the effect of collimation area and irradiation distance on x-ray dose measurement using Geiger Muller. In this case, the author tried to make a dosimeter by using the Muller Geiger module and displayed it on a personal computer. This research employed Muller Geiger sensor to detect X-ray dose and velocity, Arduino for data programming, Bluetooth HC-05 for digital communication tool between hardware and personal computer, and personal computer to display the reading. Current research was conducted using Pre-Experimental research design. Based on the results of data collection and comparison with the standard tool, it can be concluded that the greater the tube current setting (mA), the greater the dose and rate of radiation exposure at a distance of 100cm with 50KV and 70KV settings, and a distance of 150cm with 50KV settings. However, it is inversely proportional to the measurement results at a distance of 150cm with a 70KV setting. The results of this study are further expected to determine the ability of Geiger Muller to measure the dose to the irradiation distance or collimation area and can be used as a reference for further research in this field.
Analysis of the Effectiveness of Using Digital Filters in Electronic Stethoscopes Andi Fathkur Rohman; Muhammad Ridha Mak'ruf; Triwiyanto Triwiyanto; Lamidi Lamidi; Phuoc-Hai Huynh
Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol 4 No 4 (2022): October
Publisher : Department of Electromedical Engineering, POLTEKKES KEMENKES SURABAYA and IKATEMI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/jeeemi.v4i4.256

Abstract

The heart sound produced in some cases of the disease shows a certain pattern. The purpose of this study was to design an electronic stethoscope for cardiac auscultation with the following display. The contribution in this study is being able to show certain patterns that can be diagnosed in the sound signal. So that the pattern can be known when there is a heart disease disorder, an electronic stethoscope will be made for auscultation of the next display, making it easier for users to diagnose heart disease. The heart sound is obtained from the mechanical activity of the heart which is tapped by a condenser mic. The heart sound will be held in a pre-amp circuit, then the filters used are High Pass Filters and Low Pass Filters with an interrupted frequency of 20-95 Hz. The output of the filter circuit will enter the booster circuit. Then it will be processed by the microcontroller. In processing the data that will be displayed on Nextion and Speaker, the author uses Arduino Mega. Based on the test, it can be seen that the digital filter has a slight error rate because it removes the most noise, while in the analog filter there is still a lot of noise. The results of the research that has been done can be implemented using a system that really supports the needs.
Luxmeter Equipped with Proximity Sensor for Operating Lamp Light Calibration in Hospital Levana Forra Wakidi; Lusiana Lusiana; Lamidi Lamidi; Artdieansyah Nur Wiaam; Isaac John Ibanga
Jurnal Teknokes Vol 15 No 3 (2022): September
Publisher : Jurusan Teknik Elektromedik, POLTEKKES KEMENKES Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/teknokes.v15i3.248

Abstract

The measurement of the operating lamp light on the operating table is very necessary so that the light rays do not glare during surgery and pathological conditions can be recognized easily without any shadows. This study aims to design a tool to measure light intensity equipped with automatic distance measurement. The design of this tool uses an ultrasonic sensor HC-SR04 to measure the distance between the light source and the sensor module and the MAX44009 sensor to measure the light intensity of the operating lamp displayed on the TFT screen. The design of the tool has been tested on operating lamps. In this study, measurements were made on two light sources, namely the GEA brand operating lamp in the Operating Room RSIA Putri Surabaya and lamps in an Electromedical Engineering Workshop on the Surabaya campus. The results of measurements when using a lamp in an electromedical engineering workshop in Surabaya with the distance between the module and the light source using a 75 cm roll meter, it is known that the error value is 0.0127% for a distance of 100 cm as much as 0.0045%. The module error value when measuring the intensity of light between the tool and the lamp in the electromedical engineering workshop with a roll meter distance setting of 75 cm gets an error value of 0.082% lux and at a roll meter distance of 100 cm, the lux error value is 0.055%. The design of a lux meter that is equipped with a proximity sensor can measure the intensity of light and the distance between the device and the light source and can assist in the learning process with a more effective Luxmeter design that will help Electromedical Technician in testing operating lamps in hospitals become more efficient