Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Dinamika Informatika

ANALISIS SENTIMEN DATA PRESIDEN JOKOWI DENGAN PREPROCESSING NORMALISASI DAN STEMMING MENGGUNAKAN METODE NAIVE BAYES DAN SVM Saputra, Nurirwan; Adji, Teguh Bharata; Permanasari, Adhistya Erna
Dinamika Informatika Vol 5, No 1 (2015): Jurnal Dinamika Informatika
Publisher : Dinamika Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jokowi merupakan seorang tokoh masyarakat dengan jenjang karir yang sangat cepat, dan tidak luput dari pandangan masyarakat baik itu positif, netral maupun negatif. Data mengenai Jokowi yang berisikan komentar positif , netral dan negatif yang berasal dari media sosial dan blog politik diperlukan dalam menentukan langkah-langkah yang harus diambil oleh Jokowi untuk mendapatkan kepercayaan dari masyarakat. Selain itu data yang sudah didapat perlu dievaluasi untuk menunjukkan urgensi diimplementasikannya preProcessing terhadap data, yaitu normalisasi dan stemming. Analisis sentimen merupakan ilmu yang berguna untuk menganalisis pendapat seseorang, sentiment seseorang, evaluasi seseorang, sikap seseorang dan emosi seseorang ke dalam bahasa tertulis. Penelitian ini menggunakan search techniques dalam pengambilan data, sehingga pengambilan data dilakukan dengan efektif dan efisien. Search techniques dalam penelitian ini menggunakan Boolean searching dengan operator “AND”. Data yang sudah didapat dilabeli positif, netral dan negatif oleh penulis kemudian dikoreksi oleh ahli bahasa. Setelah itu dilakukan preProcessing baik itu mengubah kata tidak baku menjadi baku atau biasa disebut normalisasi menggunakan kamus dan mencari akar kata yaitu stemming dengan bantuan aplikasi Sastrawi Master. Selanjutnya dilakukan juga tokenisasi N-Gram, Unigram, Bigram, dan Trigram terhadap kalimat,  kemudian menghilangkan kata-kata yang umum digunakan dan tidak mempunyai Informasi yang berharga pada suatu konteks atau biasa disebut stopword removal, dan mempertahankan emoticon karena emoticon merupakan simbol yang menunjukkan ekspresi seseorang ke dalam tulisan. Akurasi yang terbaik dalam penelitian ini adalah dengan dilakukan normalisasi dan stemming pada data sebesar 89,2655% menggunakan metode SVM, dan kemudian data yang dinormalisasi saja sebesar 88,7006% menggunakan metode SVM. Dalam penelitian ini, tidak ada ujicoba terhadap data yang dilakukan stemming saja, dikarenakan tahap yang harus dilakukan dalam stemming adalah melakukan normalisasi terlebih dahulu terhadap data.
ANALISIS SENTIMEN DATA PRESIDEN JOKOWI DENGAN PREPROCESSING NORMALISASI DAN STEMMING MENGGUNAKAN METODE NAIVE BAYES DAN SVM Saputra, Nurirwan; Adji, Teguh Bharata; Permanasari, Adhistya Erna
Dinamika Informatika Vol 5, No 1 (2015): Jurnal Dinamika Informatika
Publisher : Dinamika Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jokowi merupakan seorang tokoh masyarakat dengan jenjang karir yang sangat cepat, dan tidak luput dari pandangan masyarakat baik itu positif, netral maupun negatif. Data mengenai Jokowi yang berisikan komentar positif , netral dan negatif yang berasal dari media sosial dan blog politik diperlukan dalam menentukan langkah-langkah yang harus diambil oleh Jokowi untuk mendapatkan kepercayaan dari masyarakat. Selain itu data yang sudah didapat perlu dievaluasi untuk menunjukkan urgensi diimplementasikannya preProcessing terhadap data, yaitu normalisasi dan stemming. Analisis sentimen merupakan ilmu yang berguna untuk menganalisis pendapat seseorang, sentiment seseorang, evaluasi seseorang, sikap seseorang dan emosi seseorang ke dalam bahasa tertulis. Penelitian ini menggunakan search techniques dalam pengambilan data, sehingga pengambilan data dilakukan dengan efektif dan efisien. Search techniques dalam penelitian ini menggunakan Boolean searching dengan operator “AND”. Data yang sudah didapat dilabeli positif, netral dan negatif oleh penulis kemudian dikoreksi oleh ahli bahasa. Setelah itu dilakukan preProcessing baik itu mengubah kata tidak baku menjadi baku atau biasa disebut normalisasi menggunakan kamus dan mencari akar kata yaitu stemming dengan bantuan aplikasi Sastrawi Master. Selanjutnya dilakukan juga tokenisasi N-Gram, Unigram, Bigram, dan Trigram terhadap kalimat,  kemudian menghilangkan kata-kata yang umum digunakan dan tidak mempunyai Informasi yang berharga pada suatu konteks atau biasa disebut stopword removal, dan mempertahankan emoticon karena emoticon merupakan simbol yang menunjukkan ekspresi seseorang ke dalam tulisan. Akurasi yang terbaik dalam penelitian ini adalah dengan dilakukan normalisasi dan stemming pada data sebesar 89,2655% menggunakan metode SVM, dan kemudian data yang dinormalisasi saja sebesar 88,7006% menggunakan metode SVM. Dalam penelitian ini, tidak ada ujicoba terhadap data yang dilakukan stemming saja, dikarenakan tahap yang harus dilakukan dalam stemming adalah melakukan normalisasi terlebih dahulu terhadap data.
ANALISIS SENTIMEN DENGAN PREPROCESSING KATA Saputra, Nurirwan
Dinamika Informatika Vol 7, No 1 (2018): Jurnal Dinamika Informatika Volume 7 Nomor 1
Publisher : Universitas PGRI Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penelitian ini berhubungan dengan politik yang mengambil data Presiden RI 2014-2019 yaitu Ir. H. Joko Widodo dari media sosial dan blog politik kemudian akan dilakukan Analisis Sentimen terhadap komentar masyarakat baik yang pro maupun kontra terhadap Ir. H. Joko Widodo. Penelitian ini lebih ke pendekatan preprocessing kata terlebih dahulu untuk meningkatkan akurasi, yaitu dengan mengubah banyak kata menjadi sebuah kata. Metode yang digunakan adalah Naïve Bayes dan Support Vector Machine (SVM). Penelitian ini melanjutkan penelitian yang sudah dilakukan sebelumnya dengan judul “Analisis Sentimen Data Presiden Jokowi Dengan Preprocessing Normalisasi Dan Stemming Menggunakan Metode Naive Bayes Dan SVM”. Akurasi pada penelitian sebelumnya “Analisis sentimen data presiden Jokowi dengan preprocessing normalisasi dan stemming menggunakan metode naive bayes dan SVM” dengan dilakukan normalisasi dan stemming pada data sebesar 89,2655% menggunakan metode SVM. Kemudian pada penelitian ini, dengan melakukan preprocessing menjadi sebuah kata, terjadi peningkatan dengan menggunakan metode SVM dengan akurasi sebesar 91,5254, yaitu peningkatan sebesar 2,2599%.   Kata kunci : analisis sentimen, svm, smo, naive bayes, preprocessing kata.
ANALISIS SENTIMEN DATA PRESIDEN JOKOWI DENGAN PREPROCESSING NORMALISASI DAN STEMMING MENGGUNAKAN METODE NAIVE BAYES DAN SVM Saputra, Nurirwan; Adji, Teguh Bharata; Permanasari, Adhistya Erna
Dinamika Informatika Vol 5, No 1 (2015): Jurnal Dinamika Informatika
Publisher : Universitas PGRI Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Jokowi merupakan seorang tokoh masyarakat dengan jenjang karir yang sangat cepat, dan tidak luput dari pandangan masyarakat baik itu positif, netral maupun negatif. Data mengenai Jokowi yang berisikan komentar positif , netral dan negatif yang berasal dari media sosial dan blog politik diperlukan dalam menentukan langkah-langkah yang harus diambil oleh Jokowi untuk mendapatkan kepercayaan dari masyarakat. Selain itu data yang sudah didapat perlu dievaluasi untuk menunjukkan urgensi diimplementasikannya preProcessing terhadap data, yaitu normalisasi dan stemming. Analisis sentimen merupakan ilmu yang berguna untuk menganalisis pendapat seseorang, sentiment seseorang, evaluasi seseorang, sikap seseorang dan emosi seseorang ke dalam bahasa tertulis. Penelitian ini menggunakan search techniques dalam pengambilan data, sehingga pengambilan data dilakukan dengan efektif dan efisien. Search techniques dalam penelitian ini menggunakan Boolean searching dengan operator “AND”. Data yang sudah didapat dilabeli positif, netral dan negatif oleh penulis kemudian dikoreksi oleh ahli bahasa. Setelah itu dilakukan preProcessing baik itu mengubah kata tidak baku menjadi baku atau biasa disebut normalisasi menggunakan kamus dan mencari akar kata yaitu stemming dengan bantuan aplikasi Sastrawi Master. Selanjutnya dilakukan juga tokenisasi N-Gram, Unigram, Bigram, dan Trigram terhadap kalimat,  kemudian menghilangkan kata-kata yang umum digunakan dan tidak mempunyai Informasi yang berharga pada suatu konteks atau biasa disebut stopword removal, dan mempertahankan emoticon karena emoticon merupakan simbol yang menunjukkan ekspresi seseorang ke dalam tulisan. Akurasi yang terbaik dalam penelitian ini adalah dengan dilakukan normalisasi dan stemming pada data sebesar 89,2655% menggunakan metode SVM, dan kemudian data yang dinormalisasi saja sebesar 88,7006% menggunakan metode SVM. Dalam penelitian ini, tidak ada ujicoba terhadap data yang dilakukan stemming saja, dikarenakan tahap yang harus dilakukan dalam stemming adalah melakukan normalisasi terlebih dahulu terhadap data.