Perdana Putera, Perdana
Agricultural Machine and Equipment Department, Agricultural Polytechnic of Payakumbuh, Tanjung Pati, 50 Kota,26271, Indonesia

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

ANALISA PEMODELAN GENERATOR MAGNET PERMANEN TIGA PHASA DENGAN SUSUNAN MAGNET ROTOR MENGIKUTI IPM – V Hidayat, Rezi; Alfiansyah, Fahmi; Fadila, Afif; Syofian, Andi; Anugrah, Anggun; Putera, Perdana
Ensiklopedia of Journal Vol 6, No 3 (2024): Vol. 6 No. 3 Edisi 1 April 2024
Publisher : Lembaga Penelitian dan Penerbitan Hasil Penelitian Ensiklopedia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33559/eoj.v6i3.2288

Abstract

This article is a study analysis for converting an automotive alternator with a maximum output of 24 volts 100 A, into a three-phase permanent magnet generator by replacing the alternator rotor with a permanent magnet rotor. The arrangement of the magnets is similar to the arrangement of an Interior Permanent Magnet (IPM) rotor in a 12-pole V model. Analysis is carried out using COMSOL Multiphysics® software, modeling permanent magnet generators adapting the shape of the alternator and the shape and number of coils on the alternator stator are maintained (not changed). Finite Element Method simulation results using N52 Neodymium Magnets on the rotor, the output voltage amplitude is 4.5 volts with an AC frequency of 50 Hz (at a speed of 500 rpm). The AC waveform of the modified generator output is not purely sinusoidal.Keywords : Generator, Permanent Magnets, Finite Element Method, Neodymium
Penentuan Kriteria Kapasitas Transformator Berdasarkan Proyeksi Kebutuhan Energi secara Mikrospasial SENEN, ADRI; DINI, HASNA SATYA; ANGGAINI, DWI; PUTERA, PERDANA
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 10, No 1: Published January 2022
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v10i1.200

Abstract

ABSTRAKProyeksi energi memiliki peran penting dalam perencanaan pengembangan sistem distribusi listrik. Penelitian ini bertujuan untuk menentukan lokasi, jumlah dan penambahan kapasitas transformator yang diperlukan di area jaringan Tangerang. Metode prakiraan proyeksi energi dilakukan secara mikrospasial dengan membagi area layananan dalam bentuk grid – grid yang kecil (kelurahan). Selanjutnya pengelompokan (clustering) dilakukan berdasar karakteristik geografis, demografi, ekonomi dan kelistrikan wilayah untuk memperkirakan kerapatan beban. Hasil clustering yang terdiri dari 100 kelurahan, terkelompok menjadi 5 cluster dengan pertumbuhan beban per cluster rata-rata sebesar 8,4 %. Hasil perhitungan kapasitas transformator untuk wilayah Tangerang untuk 10 tahun adalah 250 kVA, 630 kVA, 1000 kVA dan 1250 kVA, dengan asumsi pembebanan transformator maksimal 80 %. Disamping itu prakiraan beban pada tingkatan transformator distribusi mengalami penambahan 3.064 unit gardu distribusi.Kata kunci: Prakiraan Beban, Transformator , Micro-spatial, Cluster, Tangerang ABSTRACTEnergy projection has important role in the planning of electricity distribution systems development. This study set out to investigate location, number and capacity of the transformers in Tangerang network area. A microspatial energy projection forecasting method was used by dividing the service area into small grids. Furthermore, clustering is carried out based on geographical, demographic, economic and electrical characteristics of the region to predict the load density. The clustering results consist of 100 grids grouped into 5 clusters with an average load growth 8.4% per cluster. As the result, the transformers capacity for the Tangerang area for the next 10 years are 250 kVA, 630 kVA, 1000 kVA and 1250 kVA, with the assumption that the maximum transformer loading is 80%. In addition, the estimated load at the distribution transformer level has an additional 3,064 distribution substations.Keywords: Load Forecasting, Transformer, Micro-spatial, Cluster, Tangerang
Analysis Bio-oil of Pyrolysis Production Process from Corn Cobs Novita, Sri Aulia; Putera, Perdana; Djinis, Musdar Effy; Ernita, Yuni
Journal of Applied Agricultural Science and Technology Vol. 9 No. 3 (2025): Journal of Applied Agricultural Science and Technology
Publisher : Green Engineering Society

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55043/jaast.v9i3.463

Abstract

Corn cobs are converted into bio-oil through pyrolysis using a simple pyrolysis apparatus at temperatures ranging from 300 to 400°C. This study evaluates the efficiency of the pyrolysis system, characterizes the compounds in corn cob bio-oil, and analyzes the economic viability of the method. The methods include the raw materials preparation (through drying and size reduction), development of bio-oil production equipment, implementation of pyrolysis and condensation processes, purification of the resulting bio-oil, compound analysis of the bio-oil, performance evaluation of the equipment, and engineering economic analysis. The successful production of high-quality bio-oil depends heavily on the precise and careful installation of all system components, including the pyrolysis reactor, smoke pipe, tar catcher, condenser, coil pipe, outlet pipe, liquid smoke container, water drum, and combustion furnace. The tool has a production capacity ranging from 0.89 to 0.96 kg per hour, with a coefficient of determination of 97.94%, and produced a yield of 32% to 34%. The bio-oil derived from corn cobs contained several compounds, including acetic acid, methyl ester, decenal, methyl 9,9-dideutero-octadecanal, phenol, 1-octanol, 2-butyl, 2-heptadecanone, myristaldehyde, octadecane, 1-chloro, and 1,9-tetradecadiene. The basic operating cost of the equipment is Rp 18,509.28 per kilogram, with a break-even point (BEP) of 238.43 kg per year. The basic production cost represents the minimum selling price required to achieve profitability. Biomass pyrolysis is a crucial thermal conversion technique with significant industrial and economic potential.