Claim Missing Document
Check
Articles

Found 14 Documents
Search

IoT-based Smart Piggy Bank Design Implementation Using RFID and Telegram Notification Komarudin, Rizal Maulana; Suteddy, Wirmanto; Agustini, Devi Aprianti Rimadhani
Jambura Journal of Electrical and Electronics Engineering Vol 6, No 2 (2024): Juli - Desember 2024
Publisher : Electrical Engineering Department Faculty of Engineering State University of Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37905/jjeee.v6i2.26179

Abstract

 Saving is one of the most important things in financial management. Saving is beneficial for the long term for life. In the conventional way, people can save in a closed container or generally use an object called a piggy bank. However, there are still many shortcomings of the current conventional piggy bank, such as having to be disassembled to take the money and it is difficult to monitor the amount of savings in it so that it can only be used once. With the help of technology, these conventional tools can be used better and more efficiently. This smart piggy bank can be integrated with the Telegram when money is inserted so that it becomes more monitored in saving. The money inserted is detected by infrared sensors and color sensors which are then accumulated and sent via Telegram. Previously, there has been similar research in using sensors to detect money and send notifications based on the Internet of Things. This research aims to develop the existing research by integrating some of its features. Testing was conducted using the Black Box method, focusing on the functionality of the device. As a result, the money inserted into the piggy bank can be accumulated properly and monitored via Telegram with a calculation according to the amount of money inserted and can be used by many people because it uses an RFID card that contains user data and savings so that it becomes more efficient and recorded.
Offline Handwriting Writer Identification using Depth-wise Separable Convolution with Siamese Network Suteddy, Wirmanto; Agustini, Devi Aprianti Rimadhani; Atmanto, Dastin Aryo
JOIV : International Journal on Informatics Visualization Vol 8, No 1 (2024)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62527/joiv.8.1.2148

Abstract

Offline handwriting writer identification has significant implications for forensic investigations and biometric authentication. Handwriting, as a distinctive biometric trait, provides insights into individual identity. Despite advancements in handcrafted algorithms and deep learning techniques, the persistent challenges related to intra-variability and inter-writer similarity continue to drive research efforts. In this study, we build on well-separated convolution architectures like the Xception architecture, which has proven to be robust in our previous research comparing various deep learning architectures such as MobileNet, EfficientNet, ResNet50, and VGG16, where Xception demonstrated minimal training-validation disparities for writer identification. Expanding on this, we use a model based on similarity or dissimilarity approaches to identify offline writers' handwriting, known as the Siamese Network, that incorporates the Xception architecture. Similarity or dissimilarity measurements are based on the Manhattan or L1 distance between representation vectors of each input pair. We train publicly available IAM and CVL datasets; our approach achieves accuracy rates of 99.81% for IAM and 99.88% for CVL. The model was evaluated using evaluation metrics, which revealed only two error predictions in the IAM dataset, resulting in 99.75% accuracy, and five error predictions for CVL, resulting in 99.57% accuracy. These findings modestly surpass existing achievements, highlighting the potential inherent in our methodology to enhance writer identification accuracy. This study underscores the effectiveness of integrating the Siamese Network with depth-wise separable convolution, emphasizing the practical implications for supporting writer identification in real-world applications.
PELATIHAN MULTIMEDIA BERBASIS GAME SEBAGAI ALTERNATIF MEDIA PEMBELAJARAN PADA GURU DI KABUPATEN PANGANDARAN Munawir, Munawir; Adiwilaga, Anugrah; Suteddy, Wirmanto; Agustini, Devi Aprianti Rimadhani; Pradeka, Deden; Putra, Muhammad Taufik Dwi; Septiana, Asyifa Imanda
-
Publisher : LPPM UNIVERSITAS KHAIRUN

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/pengamas.v6i3.7037

Abstract

Kegiatan Pengapdian ini bertujuan untuk menginvestigasi dan mengimplementasikan multimedia berbasis game sebagai alternatif media pembelajaran untuk guru di Kabupaten Pangandaran. Media interaktif ini dirancang menggunakan Microsoft PowerPoint yang dikemas dalam bentuk game, dengan harapan dapat meningkatkan efektivitas dan keterlibatan guru dalam proses pembelajaran. Metodologi penelitian melibatkan tahap desain, pengembangan, implementasi, dan evaluasi. Desain multimedia didasarkan pada prinsip-prinsip pembelajaran yang menarik dan berfokus pada penyampaian materi dengan pendekatan yang interaktif. Proses pengembangan melibatkan pemilihan konten yang relevan dengan kebutuhan guru di Kabupaten Pangandaran dan penyesuaian elemen-elemen game agar sesuai dengan kebutuhan pembelajaran. Implementasi media interaktif dilakukan melalui pelatihan kepada sejumlah guru sebagai kelompok uji coba. Evaluasi dilakukan dengan mengumpulkan data dari kuesioner pra dan pasca kegiatan. Analisis data dilakukan untuk mengukur tingkat keefektifan, keterlibatan, dan respons guru terhadap media pembelajaran berbasis game. Hasilnya rata-rata 75% setuju bahwa penggunaan power point sebagai media pembelajaran bermanfaat dalam meningkatkan semangat siswa, memudahkan penyampaian materi juga memudahkan siswa dalam memahami materi. Respon positif setalah kegiatan pelatihan dari peserta tercermin bahwa 90% dari mereka bersemangat untuk mencoba membuat media pembelajaran berbasis PowerPoint sesuai dengan yang diajarkan dalam pelatihan, serta menggunakannya dalam proses pembelajaran dan sebanyak 86% peserta menyatakan bahwa pelatihan berhasil meningkatkan kemampuan mereka, terutama dalam pembuatan media pembelajaran interaktif. Hasil penelitian diharapkan dapat memberikan pemahaman lebih dalam tentang potensi penggunaan multimedia berbasis game dalam konteks endidikan guru di Kabupaten Pangandaran. Implikasi praktis penelitian ini diharapkan dapat meningkatkan minat dan motivasi guru untuk memanfaatkan teknologi multimedia dalam proses pembelajaran, sehingga mendukung peningkatan kualitas endidikan di daerah tersebut
End-To-End Evaluation of Deep Learning Architectures for Off-Line Handwriting Writer Identification: A Comparative Study Suteddy, Wirmanto; Agustini, Devi Aprianti Rimadhani; Adiwilaga, Anugrah; Atmanto, Dastin Aryo
JOIV : International Journal on Informatics Visualization Vol 7, No 1 (2023)
Publisher : Society of Visual Informatics

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30630/joiv.7.1.1293

Abstract

Identifying writers using their handwriting is particularly challenging for a machine, given that a person’s writing can serve as their distinguishing characteristic. The process of identification using handcrafted features has shown promising results, but the intra-class variability between authors still needs further development. Almost all computer vision-related tasks use Deep learning (DL) nowadays, and as a result, researchers are developing many DL architectures with their respective methods. In addition, feature extraction, usually accomplished using handcrafted algorithms, can now be automatically conducted using convolutional neural networks. With the various developments of the DL method, it is necessary to evaluate the suitable DL for the problem we are aiming at, namely the classification of writer identification. This comparative study evaluated several DL architectures such as VGG16, ResNet50, MobileNet, Xception, and EfficientNet end-to-end to examine their advantages to offline handwriting for writer identification problems with IAM and CVL databases. Each architecture compared its respective process to the training and validation metrics accuracy, demonstrating that ResNet50 DL had the highest train accuracy of 98.86%. However, Xception DL performed slightly better due to the convergence gap for validation accuracy compared to all the other architectures, which were 21.79% and 15.12% for IAM and CVL. Also, the smallest gap of convergence between training and validation accuracy for the IAM and CVL datasets were 19.13% and 16.49%, respectively. The results of these findings serve as the basis for DL architecture selection and open up overfitting problems for future work.