Claim Missing Document
Check
Articles

Found 13 Documents
Search
Journal : eProceedings of Engineering

Sistem Rekomendasi Buku dengan Metode Berbasis Clustering Hilmi Eko Arianto; Dade Nurjanah; Rita Rismala
eProceedings of Engineering Vol 5, No 3 (2018): Desember 2018
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak Metode collaborative filtering adalah metode populer yang digunakan untuk sistem rekomendasi dengan berbagai macam domain. Pada domain buku, metode tersebut menggunakan rating yang diberikan user terhadap buku. Tetapi ada kekurangan terhadap metode tersebut dikarenakan harus mempertimbangkan semua buku yang ada untuk proses rekomendasi. Karena harus mempertimbangkan keseluruhan buku, maka membutuhkan waktu yang lebih lama untuk melakukan rekomendasi. Clustering adalah salah satu cara untuk mengatasi kekurangan metode collaborative filtering. Metode ini akan mengelompokkan buku berdasarkan kemiripan user, sehingga proses rekomendasi tidak perlu mempertimbangkan keseluruhan buku. Kebanyakan metode berbasis clustering harus mengetahui berapa jumlah kelompok buku yang akan digunakan. Karena tidak memiliki jumlah kelompok buku sebelumnya, self-constructing clustering dapat digunakan jika data yang digunakan tidak memiliki jumlah kelompok. Pada tugas akhir ini, dilakukan studi tentang implementasi metode berbasis clustering dengan algoritma self-constructing clustering. Algoritma ini akan mengelompokkan buku berdasarkan kemiripan user tanpa mengetahui jumlah kelompok buku yang ada. Hasil pengujian menunjukkan bahwa metode dengan algoritma tersebut dapat digunakan hingga merekomendasikan buku kepada user pada data yang hanya berupa data user, buku, dan rating. Pengujian dilakukan dengan menggunakan 2 data. Hasil pengujian menghasilkan DOA dan MAE sebesar 50% dan 1.10283, serta pada data kedua didapatkan 56% dan 1.137. Abstract Collaborative filtering method is a popular method used for recommendation systems with various domains. In the book domain, the method uses the rating that the user gives to the book. But there are disadvantages to the method because they have to consider all the books available for the recommendation process. Having to consider the whole book, it will take longer to make a recommendation. Clustering based is one way to overcome the lack of collaborative filtering methods. This method will group books according to user resemblance, so the recommendation process does not need to consider the entire book. Most clustering based methods must know how many groups of books will be used. Because it does not have the number of previous book groups, self-constructing clustering can be used if the data used has no number of groups. In this final project, a study about clustering based method implementation with self-constructing clustering algorithm. This algorithm will group the book based on the user's similarity without knowing the number of existing book groups. The test results show that the method with the algorithm can be used up to recommend the book to the user on the data only in the form of user data, books, and rating. Testing is using 2 data. The test results produced DOA and MAE of 50% and 1.10283, and the second data obtained 56% and 1,137.
Sistem Rekomendasi Pada Buku Dengan Menggunakan Metode Trust-aware Recommendation Mohammad Fathurrahman; Dade Nurjanah; Rita Rismala
eProceedings of Engineering Vol 4, No 3 (2017): Desember, 2017
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sistem rekomendasi merupakan fitur yang banyak digunakan pada perangkat lunak zaman sekarang. Sistem rekomendasi sangat berguna untuk pengguna yang menggunakan sebuah perangkat lunak terutama sistem rekomendasi pada buku, karena fitur ini dapat memanjakan pengguna dengan memberikan rekomendasi buku yang mungkin sesuai dengan preferensi buku yang diinginkan. Sistem rekomendasi pada Tugas Akhir ini menggunakan metode Trust-Aware, dimana metode ini merupakan hasil penggabungan metode Collaborative Filtering dan PageRank. Dimana Collaborative Filtering menggunakan similarity metric untuk melakukan penghitungan rating, dan PageRank menggunakan trust metric untuk melakukan penghitungan terhadap setiap buku yang dikunjungi dengan melakukan show synopsis. Kemudian akan dilakukan pengukuran hasil pengujian terhadap sistem rekomendasi ini menggunakan MAE. Pengujian dilakukan dengan 3 skenario yang menggunakan 3 jenis jumlah data yang berbeda. Hasil pengujian memberikan angka 1,267 , 1,294 dan 1,181, yang artinya ketiga nilai tersebut tidak mempunyai selisih yang tidak terlalu jauh. Sehingga dapat ditarik kesimpulan bahwa metode Trust-Aware dapat digunakan pada sistem rekomendasi buku dan tidak terpengaruh oleh jumlah buku yang digunakan. Kata kunci: sistem rekomendasi, collaborative filtering, pagerank, trust-aware
Implementasi Convolutional Neural Network Dan Probabilistic Matrix Factorization Pada Sistem Rekomendasi Buku Zaki Mudzakir Hidayatullah; Dade Nurjanah; Rita Rismala
eProceedings of Engineering Vol 6, No 2 (2019): Agustus 2019
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

AbstrakSistem Rekomendasi dapat merekomendasikan buku pada user tertentu berdasarkan prediksi rating, isikonten buku, ataupun metode lainnya. Banyak metode recommendation system yang digunakan sepertiProbabilistic Matrix Factorization, dimana konten yang sudah diberi rating akan seringdirekomendasikan. Namun pada Probabilistic Matrix Factorization memiliki kekurangan yaitu dalammengatasi data yang memiliki nilai rating yang jarang. Maka diperlukan suatu metode yang digunakanuntuk memahami konteks isi dari buku sehingga tidak hanya melihat dari rating saja namun dilihat jugadari review suatu buku. Untuk mempelajari review maka diigunakan suatu metode yaitu ConvolutionalNeural Network dengan cara memberikan suatu nilai vektor yang mengarah terhadap konteks buku kepada Probabilistic Matrix Factorization suatu recommender system. Berdasarkan hasil pengujiannya,metode tersebut dapat meningkatkan keakuratan data dengan MAE = 3,0114707. Sedangkan untukProbabilistic Matrix Factorization nilai MAE = 4,0185377. Dari nilai tersebut dapat dijelaskan bahwametode Convolutional Neural Network dan Probabilistic Matrix Factorization bekerja cukup baik untuk data yang jarang memiliki rating..Kata kunci : recommender system, Convolutional Neural Network, Probabilistic Matrix FactorizationAbstractThe Recommendation System can recommend books to certain users based on rating predictions, bookcontent, or other methods. Many system recommendation methods are used such as Probabilistic MatrixFactorization, where content that has been rated will often be recommended. However, the ProbabilisticMatrix Factorization has the disadvantage of overcoming data that has a rare rating value. So we need amethod used to understand the context of the contents of the book so that it is not only seen from therating but also seen from a book review. To study the review, a method called Convolutional NeuralNetwork is used by giving a vector value that leads to the context of the book to the Probabilistic MatrixFactorization of a recommender system. Based on the test results, this method can improve the accuracy ofthe data with MAE = 3.0114707. As for the Probabilistic Matrix Factorization the MAE= 4.0185377. Fromthese values it can be explained that the Convolutional Neural Network and Probabilistic MatrixFactorization methods work well enough for data that rarely has a rating.Keywords: Recommender system, Probabilistic Matrix Factorization, Convolutional Neural Network