Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Indonesia Symposium on Computing

Prediksi Tingkat Inflasi Di Indonesia Berbasis Jaringan Syaraf Tiruan Dan Algoritma Genetika Rita Rismala; Said Al Faraby
Indonesia Symposium on Computing Indonesian Symposium on Computing 2014/Seminar Nasional Ilmu Komputasi Teknik Informatika (SNIKTI)
Publisher : Indonesia Symposium on Computing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Inflasi menjadi indikator yang sangat penting dalam menganalisis perekonomian negara. Oleh karena itu prediksi terhadap nilai inflasi menjadi penting agar dapat membantu pemerintah dalam mengambil kebijakan untuk menjaga stabilitas moneter dan perekonomian. Pada penelitian ini dilakukan prediksi tingkat inflasi di Indonesia dengan tidak hanya mempertimbangkan data historis inflasi, namun juga mempertimbangkan faktor-faktor lain yang mempengaruh tingkati inflasi di Indonesia. Prediksi dilakukan menggunakan Jaringan Syaraf Tiruan dengan menggunakan algoritma pembelajaran berbasis Algoritma Genetika. Hasil pengujian menunjukkan bahwa akurasi sistem dalam memprediksi nilai tingkat inflasi belum cukup baik. Namun dalam memprediksi kelas inflasi, sistem ini sudah cukup baik terutama dalam mengidentifikasi inflasi dengan kelas rendah.
Prediksi Kelulusan Tepat Waktu Mahasiswa Menggunakan Neuro-Fuzzy Classification (NEFClass) (Studi Kasus: Program Studi S1 Teknik Informatika, Universitas Telkom) Rita Rismala; Serli Fatriandini; Retno Novi Dayawati
Indonesia Symposium on Computing Indonesia Symposium on Computing 2015
Publisher : Indonesia Symposium on Computing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Salah satu indikator yang dapat digunakan untuk mengukur performansi studi mahasiswa adalah informasi mengenai lama studi yang berkaitan erat dengan kelulusan tepat waktu. Prediksi kelulusan tepat waktu mahasiswa dapat berperan sebagai early warning, baik bagi dosen wali, ketua program studi, orang tua, maupun mahasiswa itu sendiri. Prediksi kelulusan tepat waktu yang dilakukan secara dini setelah selesai masa Tahap Persiapan Bersama (TPB) akan berdampak positif dalam proses perbaikan performansi studi mahasiswa dan memperbesar peluang kelulusan tepat waktu. Penelitian ini menggunakan model Neuro Fuzzy Classification (NEFCLASS) untuk memprediksi kelulusan tepat waktu mahasiswa. Prediktor yang digunakan untuk memprediksi kelulusan tepat waktu mahasiswa pada penelitian ini adalah IPK TPB, lama masa TPB yang ditempuh, jumlah mata kuliah TPB yang diulang, dan jumlah pengambilan mata kuliah tertentu di masa TPB. Hasil prediksi diklasifikasikan ke dalam 2 kelas yaitu kelas tepat waktu dan kelas tidak tepat waktu. Analisis dilakukan terhadap pengaruh prediktor dan pengaruh parameter learning rate serta epoch terhadap performansi sistem. Hasil yang diperoleh dari penelitian menunjukkan performansi optimal yang dapat diperoleh adalah sebesar 77.725%.  
Implementasi dan Analisis Online – Updating Regularization Kernel Matrix Factorization Model pada Sistem Rekomendasi Kadek Byan Prihandana Jati; Agung Toto Wibowo; Rita Rismala
Indonesia Symposium on Computing Indonesia Symposium on Computing 2015
Publisher : Indonesia Symposium on Computing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Faktorisasi Matriks adalah salah satu metode yang digunakan pada Sistem Rekomendasi untuk membuat sebuah model prediksi rating. Salah satu jenisnya adalah Regularized Matrix Factorization yang mampu memberikan kualitas rekomendasi yang tinggi pada sebuah sistem rekomendasi. Akan tetapi, teknik - teknik Faktorisasi Matriks bermasalah jika model pada sistem rekomendasi berupa model yang statik. Permasalahan performansi terjadi, karena proses learning data pada Faktorisasi Matriks membutuhkan waktu yang lama. Model Online dari Faktorisasi Matriks merupakan hal yang dapat memperbaiki model sebelumnya, dengan model online, waktu yang dibutuhkan untuk melakukan proses prediksi untuk user dan item yang baru, lebih cepat dibandingkan dengan model offline faktorisasi matriks. Penelitian ini berfokus dalam menganalisis dan mengimplementasikan model online dari Regularized Matrix Factorization pada sebuah sistem rekomendasi. Hasil yang diperoleh adalah kualitas prediksi rating dengan metode online – update RKMF mengungguli kualitas prediksi rating dengan metode full – retrain RKMF dengan perbedaan nilai RMSE 1.5% pada kondisi terbaik, dan dengan waktu prediksi yang sangat singkat. Â