Claim Missing Document
Check
Articles

Analisis Sentimen pada X Terhadap Pilkada 2024 Menggunakan Ekspansi Fitur FastText dan CNN dengan Optimasi Bat Algorithm Firdaus, Dzaki Afin; Setiawan, Erwin Budi
eProceedings of Engineering Vol. 12 No. 3 (2025): Juni 2025
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pilkada 2024 merupakan momentum penting dalamdemokrasi Indonesia yang akan menentukan arahpembangunan daerah. Dalam konteks ini, analisis sentimendapat menjadi alat yang efektif untuk memahami opinipublik terhadap calon pemimpin dan isu-isu yang berkaitandengan Pilkada. Penelitian ini bertujuan untukmengimplementasikan sistem analisis sentimenmenggunakan Convolutional Neural Network (CNN) yangdioptimalkan dengan Bat Algorithm dan ekspansi fiturmenggunakan FastText. Metode ini diterapkan pada datatweet berbahasa Indonesia yang dikumpulkan selamaperiode Pilkada 2024. Hasil evaluasi menunjukkan bahwaakurasi tertinggi diperoleh dengan menggunakan maxfeature sebesar 15.000 (73,01%), konfigurasi Uni-Bigram(73,30%), dan ekspansi fitur menggunakan FastText dengankorpus Tweet + IndoNews pada Top 1 (73,82%). Optimasimenggunakan Bat Algorithm memberikan peningkatansebesar 0,05% (73,82% menjadi 73,87%), yangmenunjukkan bahwa FastText secara signifikanmeningkatkan akurasi model. Bat Algorithm terbukti efektifdalam mengoptimalkan parameter model dan memberikankontribusi positif dalam peningkatan kinerja. Penelitian inimenunjukkan bahwa penggunaan FastText dapatmemperbaiki akurasi model analisis sentimen, sementara BatAlgorithm juga memberikan kontribusi yang berhargadalam optimasi model. Kata kunci: analisis sentimen, CNN, bat algorithm, fasttext, pilkada 2024, optimasi
Depression Detection on Social Media X Using Hybrid Deep Learning CNN-BiGRU with Attention Mechanism and FastText Feature Expansion Widiarta, I Wayan Abi; Setiawan, Erwin Budi
Jurnal Ilmiah Teknik Elektro Komputer dan Informatika Vol. 11 No. 2 (2025): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/jiteki.v11i2.30687

Abstract

Depression is a global mental health disorder affecting over 280 million people, with significant challenges in identifying sufferers due to societal stigma. In Indonesia, the National Adolescent Mental Health Survey in 2022 revealed that 17.95 million adolescents experience mental health disorders, with a portion of them suffering from depression. Social media platform X offers an alternative for individuals to share their mental health status anonymously, bypassing societal stigma. This study proposes a hybrid deep learning model combining CNN and BiGRU with an attention mechanism, TF-IDF for feature extraction, and FastText for feature expansion to detect depression in Indonesian tweets. The dataset comprises 50,523 Indonesian tweets, supplemented by a similarity corpus of 151,117 data. To optimize model performance, five experimental scenarios were conducted, focusing on split ratios, n-gram configurations, maximum features, feature expansion, and attention mechanisms. The main contribution of this research is the novel integration of FastText for feature expansion and the attention mechanism within a CNN-BiGRU hybrid model for depression detection. The results demonstrate the effectiveness of this combination, with the BiGRU-ATT-CNN-ATT model achieving an accuracy of 84.40%. However, challenges such as handling noisy, ambiguous social media data and addressing out-of-vocabulary words remain. Future research should explore additional feature expansion techniques, optimization algorithms, and approaches to handle noisy data, improving model robustness for real-world applications in mental health detection.
Enhancing Cyberbullying Detection with a CNN-GRU Hybrid Model, Word2Vec, and Attention Mechanism Adriana, Kaysa Azzahra; Setiawan, Erwin Budi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4176

Abstract

Cyberbullying is an act of violence commonly committed on online platforms such as social media X, often causing psychological effects for victims. Despite prevention efforts, traditional methods for detecting cyberbullying show limited effectiveness due to the complexity of language and diversity of expressions, leading to suboptimal performance. This study aims to enhance detection accuracy by applying Convolutional Neural Networks (CNN) and Gated Recurrent Unit (GRU) with an attention mechanism to analyze textual data from tweets. The model uses Term Frequency-Inverse Document Frequency (TF-IDF) for extracting important words and Word2Vec for expanding text representation. A total of 30,084 labeled datasets from tweets on social media X were utilized. Results indicate the hybrid CNN-GRU model with attention achieved the highest accuracy of 80.96%, outperforming stand-alone CNN and GRU models. Additionally, TF-IDF and Word2Vec significantly improved model performance, with the CNN-GRU combination proving most effective for detecting cyberbullying. This study contributes to computer science by proposing a novel approach that integrates CNN, GRU, and attention mechanisms with advanced feature extraction techniques, providing a more reliable detection system for online platforms. It also highlights the potential for integrating multimodal data to further enhance future performance.
Depression Detection using Convolutional Neural Networks and Bidirectional Long Short-Term Memory with BERT variations and FastText Methods Widjayanto, Leonardus Adi; Setiawan, Erwin Budi
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 3 (2025): JUTIF Volume 6, Number 3, Juni 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.3.4874

Abstract

Depression has become a significant public health concern in Indonesia, with many individuals expressing mental distress through social media platforms like Twitter. As mental health issues like depression are increasingly prevalent in the digital age, social media provides a valuable avenue for automated detection via text, though obstacles such as informal language, vagueness, and contextual complexity in social media complicate precise identification. This study aims to develop an effective depression detection model using Indonesian tweets by combining Convolutional Neural Networks (CNN) and Bidirectional Long Short-Term Memory (BiLSTM). The dataset consisted of 58,115 tweets, labeled into depressed and non-depressed categories. The data were preprocessed, followed by feature extraction using BERT and feature expansion using FastText. The FastText model was trained on three corpora: Tweet, IndoNews, and combined Tweet+IndoNews corpus; the total corpus will be 169,564 entries. The best result was achieved by BiLSTM model with 84.67% accuracy, a 1.94% increase from the baseline, and the second best was the BiLSTM-CNN hybrid model achieved 84.61 with an accuracy increase of 1.7% from the baseline. These result indicate that combining semantic feature expansion with deep learning architecture effectively improves the accuracy of depression detection on social media platforms. These insights highlight the importance of integrating semantic enrichment and contextual modeling to advance automated mental health diagnostics in Indonesian digital ecosystems.
Sentiment Analysis on Social Media Using Long Short-Term Memory and Word2Vec Feature Expansion Methods with Adam Optimization Khoirunnisa, Sanabila; Setiawan, Erwin Budi
Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika Vol. 11 No. 1 (2025): April 2025
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/khif.v11i1.3957

Abstract

Twitter is one of Indonesia's most popular social media, so it has many users. The intensity of Twitter use can be used to carry out sentiment analysis related to topics being widely discussed, especially regarding the 2024 Indonesian presidential election. To understand public views, public opinion is divided from text data into positive and negative polarities to measure public sentiment. The classification model uses Long Short-Term Memory (LSTM) for feature extraction, utilizing TF-IDF. In addition, this model also combines Word2Vec based on the Indonews corpus, which contains 142,545 articles for feature expansion. This model is further optimized using the Adam optimization technique to improve accuracy. By using a dataset of 37,391 data, the results of this research obtained an accuracy score of 83.04% and an f1 score of 82.62%. This is an increase in accuracy of 11.22%; for the f1 score, it was a 10.92% increase from the baseline. This indicates that the classification model using Long Short-Term Memory (LSTM) with the application of TF-IDF as feature extraction, Word2Vec as feature expansion, and Adam optimization successfully produced optimal sentiment predictions regarding the 2024 Indonesian Presidential Election.
Twitter Social Media-Based Sentiment Analysis Using Bi-LSTM Method With Genetic Algorithms Optimization Prahasto, Girindra Syukran; Setiawan, Erwin Budi
Khazanah Informatika : Jurnal Ilmu Komputer dan Informatika Vol. 11 No. 1 (2025): April 2025
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/khif.v11i1.3959

Abstract

Advances in information technology, particularly social media platforms such as Twitter, can be used to explore public sentiment around the much-discussed 2024 Indonesian Presidential Election. Using sentiment analysis as part of text mining, we focus on distinguishing positive and negative polarity using Natural Language Processing (NLP) techniques with to detect the accuracy of tweet polarity regarding the 2024 Indonesian Presidential Election. Specifically, we implement the Bidirectional Long Short-term Memory (Bi-LSTM) method, an enhanced version of LSTM, for sentiment analysis. The text is preprocessed, TF-IDF is used for word importance weighting, and Word2Vec is used for efficient learning of high-quality words. To optimize the accuracy of the model, we used Genetic Algorithm (GA), a heuristic approach rooted in the principles of genetics and natural selection. GA operates on a chromosome-based population, aligned with Darwinian evolutionary concepts. This research aims to compare the accuracy of the Bi-LSTM model with various feature extraction methods, including TF-IDF and Word2Vec, in measuring the polarity of election-related tweets. This research highlights the comparison and improvement of the accuracy of each scenario in the built model. The accuracy score results in this research was 83%, where the accuracy score increases from the baseline by 7.98%.
Co-Authors Abdullah, Athallah Zacky Adriana, Kaysa Azzahra Agung Toto Wibowo Ahmad Zahri Ruhban Adam Aji Reksanegara Aji, Hilman Bayu Alvi Rahmy Royyan Anang Furkon RIfai Anindika Riska Intan Fauzy Annisa Aditsania Annisa Cahya Anggraeni Annisa Cahya Anggraeni Annisa Rahmaniar Dwi Pratiwi Arie Ardiyanti Arki Rifazka Arsytania, Ihsani Hawa Athirah Rifdha Aryani Aufa Ab'dil Mustofa Aydin, Raditya Bagas Teguh Imani Bayu Muhammad Iqbal Bayu Surya Dharma Sanjaya Billy Anthony Christian Martani Brenda Irena Brigita Tenggehi Crisanadenta Wintang Kencana Damarsari Cahyo Wilogo Daniar Dwi Pratiwi Daniar Dwi Pratiwi Dea Alfatihah Nindya Erlani Dede Tarwidi Dedy Handriyadi Dery Anjas Ramadhan Dhinta Darmantoro Diaz Tiyasya Putra Dion Pratama Putra, Dion Pratama Diyas Puspandari Dwi Hariyansyah Riaji Faidh Ilzam Nur Haq Famardi Putra Muhammad Raffly Raffly Fathurahman Alhikmah Fathurahman Alhikmah Fazira Ansshory, Azrina Febiana Anistya Feby Ali Dzuhri Fhina Nhita Fhina Nhita Fida Nurmala Nugraha Fikri Maulana, Fikri Firdaus, Dzaki Afin Fitria, Mahrunissa Azmima Fitria Gde Bagus Janardana Abasan, I Ghina Dwi Salsabila Gita Safitri Grace Yohana Grace Yohana Hanif Reangga Alhakiem Hildan Fawwaz Naufal Husnul Khotimah Farid I Gusti Ayu Putu Sintha Deviya Yuliani I Kadek Candradinata I Made Darma Cahya Adyatma Ibnu Sina, Muhammad Noer Ilyana Fadhilah Inggit Restu Illahi Irma Palupi Isabella Vichita Kacaribu Isep Mumu Mubaroq Isman Kurniawan Kamil, Ghani Kartika Prameswari Kemas Muslim Lhaksmana Kevin Usmayadhy Wijaya Khoirunnisa, Sanabila Luthfi Firmansah M. Arif Bijaksana Mahmud Imrona Mansel Lorenzo Nugraha Marissa Aflah Syahran Marissa Aflah Syahran Maulina Gustiani Tambunan Mela Mai Anggraini Moh Adi Ikfini M Moh. Hilman Fariz Muhammad Afif Raihan Muhammad Faiq Ardyanto Putro Muhammad Khiyarus Syiam Muhammad Kiko Aulia Reiki Muhammad Nur Ilyas Muhammad Shiba Kabul Muhammad Tsaqif Muhadzdzib Ramadhan Nabilla Kamil Naufal Adi Nugroho Naufal Razzak , Robith Nilla, Arliyanna Nisa Maulia Azahra Nur Ihsan Putra Munggaran Nuril Adlan , Muhammad Prahasto, Girindra Syukran Rafi Anandita Wicaksono Raisa Sianipar Rakhmat Rifaldy Ramadhan, Ananta Ihza Ramadhan, Helmi Sunjaya Rayhan Rahmanda Refka Muhammad Furqon Regina Anatasya Rudiyanto Rendo Zenico Ridho Maulana Cahyudi Rifaldy Bintang Ramadhan Rizki Annas Sholehat Roji Ellandi Salsabil, Adinda Arwa Sari Ernawati Saut Sihol Ritonga Septian Nugraha Kudrat Septian Nugraha Kudrat Setiawan, Rizki Tri Shakina Rizkia Siti Inayah Putri Sri Suryani Sri Suryani Sukmawati Dwi Lestari Syafa Fahreza Syahdan Naufal Nur Ihsan Valentino, Nico Wida Sofiya Widiarta, I Wayan Abi Widjayanto, Leonardus Adi Widyanto, Jammie Reyhan Windy Ramadhanti Yoan Maria Vianny Yuliant Sibaroni Zahwa Dewi Artika Zakaria, Aditya Mahendra ZK Abdurahman Baizal