Claim Missing Document
Check
Articles

Aspect-Level Sentiment Analysis on Social Media Using Gated Recurrent Unit (GRU) Kamil, Ghani; Setiawan, Erwin Budi
Building of Informatics, Technology and Science (BITS) Vol 4 No 4 (2023): March 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i4.3105

Abstract

Twitter is one of the popular social media for sharing opinions, one of which is about movie reviews. There are many opinions related to movie reviews on Twitter social media so the assessment of a movie can vary. Therefore, aspect-level sentiment analysis is needed to classify movie reviews to provide optimal results. This research was conducted by building a system using the Gated Recurrent Unit (GRU) method to perform sentiment analysis at the aspect level on movie reviews taken from Twitter. The aspects used in this research are plot, acting, and director. This research also conducted experiments by combining three techniques, which are feature extraction using TF-IDF, feature expansion with GloVe, and the application of SMOTE to improve model accuracy. The results show that each test scenario can improve the accuracy and F1-Score values of each aspect. The final value of each aspect is the accuracy value for the plot aspect is 70.40%(+7.62%) and F1-Score is 70.35%(+9.70%), the accuracy value is 93.75%(+6.28%) and F1-Score is 93.70%(+65.19%) for the acting aspect, and the accuracy value is 90.44%(+4.60%) and F1-Score is 90.17%(+122.80%) for the director aspect.
Detecting Hoax Content on Social Media Using Bi-LSTM and RNN Aji, Hilman Bayu; Setiawan, Erwin Budi
Building of Informatics, Technology and Science (BITS) Vol 5 No 1 (2023): June 2023
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v5i1.3585

Abstract

Online media, such as websites and applications, have become a communication tool available on the internet. Social media is a part of online media that can be used to spread news, opinions, or even hoaxes, such as through Twitter. Although hoaxes are difficult to eliminate, several systems have been built using deep learning approaches that can process text and images to detect the truthfulness of news. In this study, four systems were built using four deep learning methods, namely Bi-directional Long Short-Term Memory (Bi-LSTM), Recurrent Neural Network (RNN), hybrid RNN-Bi-LSTM, and hybrid Bi-LSTM-RNN. Feature extraction was performed using Term Frequency - Inverse Document Frequency (TF-IDF) and feature expansion was performed using Global Vectors (GloVe). The data used has been adjusted according to the keyword of fake news on mainstream news portals. This study attempted several scenarios to compare the various methods that have been built, with the aim of finding the best method that provides the highest accuracy. The results showed that the Bi-LSTM method had the highest accuracy of 96.48%, while the hybrid Bi-LSTM-RNN method ranked second with an accuracy of 96.36%, followed by the RNN method with an accuracy of 95.49%, and the hybrid RNN-Bi-LSTM method with an accuracy of 95.34%.
The Sentiment Analysis of BBCA Stock Price on Twitter Data Using LSTM and Genetic Algorithm Optimization Setiawan, Rizki Tri; Setiawan , Erwin Budi
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12825

Abstract

In today's business world, there is significant development and emergence of various and diverse innovations. Therefore, every company needs to develop itself in various ways, one of which is going public. This involves a company selling a percentage of its value to the public in order to facilitate its growth in every aspect required. However, it is not easy for issuers to attract investors to invest their capital because each investor has different criteria in terms of investment unit value. Essentially, the stock price depends on the strengths and weaknesses of the company. Hence, in order to expand the market and manage customer relationships, information is needed as a decision support. One of the sources of information that can be used is Twitter, which includes positive, neutral, and negative opinions. This study employs the LSTM classification method and word embedding using GloVe, followed by Genetic Algorithm optimization, which is used to predict sentiment in tweets related to the BBCA stock. The model is built with classification using Long Short-Term Memory to determine the level of accuracy produced. Then, the word embedding method using GloVe is used, and the obtained results with the GloVe-LSTM method yield an overall accuracy score of 71%. Furthermore, the optimization method using Genetic Algorithm is applied to enhance the previous method, GloVe-LSTM, resulting in an accuracy of 87% with the best individual values of 111,170, 0.398, 93, etc., and the best fitness score of 0.8724.
Stock Price Correlation Analysis with Twitter Sentiment Analysis Using The CNN-LSTM Method Ibnu Sina, Muhammad Noer; Setiawan, Erwin Budi
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12855

Abstract

The intricate interplay between stock prices, reflecting a company's intrinsic value, and multifaceted factors like economic conditions, corporate performance, and market sentiment, constitutes a vital research domain. Grounded in sentiment analysis, our study deciphers public opinions from vast textual data to gauge sentiment, leveraging Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) models. We focus on Bank Central Asia (BBCA), a prominent Indonesian banking institution, aiming to forecast stock price fluctuations by analyzing sentiment trends extracted from social media, especially Twitter. Meticulous experimentation, encompassing data segmentation, feature extraction, augmentation, and model refinement, yields significant enhancements in prediction accuracy. The CNN-LSTM model's performance improves from 73.41% to a robust 77.75% accuracy, with F1-scores rising from 73.00% to 75.42%. Importantly, strong correlations emerge between sentiment predictions and actual stock price movements, validated by Spearman correlation coefficients. Positive sentiment exhibits a substantial correlation of 0.745 with stock price changes, while negative sentiment exerts notable influence with a correlation coefficient of 0.691. In summary, our study advances the field of sentiment-driven stock price prediction, showcasing deep learning's effectiveness in extracting sentiment from social media narratives. The implications extend to understanding market dynamics and potentially integrating sentiment-aware strategies into financial decision-making. Future research directions could explore model transferability across financial contexts, real-time sentiment data integration, and interpretability techniques for enhanced practicality in sentiment-driven predictions.
Social Media Based Film Recommender System (Twitter) on Disney+ with Hybrid Filtering Using Support Vector Machine Ramadhan, Helmi Sunjaya; Budi Setiawan, Erwin
Sinkron : jurnal dan penelitian teknik informatika Vol. 7 No. 4 (2023): Article Research Volume 7 Issue 4, October 2023
Publisher : Politeknik Ganesha Medan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33395/sinkron.v8i4.12876

Abstract

In the current era, the culture of watching TV shows and movies has been made easier by the presence of the internet. Now, watching movies on platforms can be done from anywhere, one of which is Disney+. At times, people find it challenging to decide which film to watch given the multitude of genres and film titles available on these platforms. One solution to this issue is a recommendation system that can suggest films based on ratings. The recommendation system to be utilized involves Collaborative Filtering, Content-Based Filtering, and Hybrid Filtering. This is because Collaborative Filtering and Content-Based Filtering encounter issues like cold start, sparsity, and overspecialization. Thus, the objective of this study is to develop a recommendation system using Hybrid Filtering combined with Support Vector Machine (SVM). In this research, classification will be carried out using poly, linear, and RBF kernels with varying parameters. Techniques such as TF-IDF, RMSE, tuning, and data balancing with SMOTEN will be implemented to enhance accuracy during the classification process. The evaluation employed in this study utilizes the confusion matrix. Support Vector Machine, when tuned and combined with SMOTEN, achieves noteworthy results, particularly with the RBF kernel which attains a Precision score of 0.94. Recall produces a value of 0.93 with the Poly kernel, while the highest Accuracy, at 0.93, is achieved with the RBF kernel. Furthermore, the RBF kernel also demonstrates the highest F1-Score of 0.93. These findings illustrate elevated precision, recall, accuracy, and F1-Score within the context of hybrid filtering, achieved through the application of Support Vector Machine for classification and the implementation of the SMOTEN technique.
Empowering hate speech detection: leveraging linguistic richness and deep learning Gde Bagus Janardana Abasan, I; Setiawan, Erwin Budi
Bulletin of Electrical Engineering and Informatics Vol 13, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i2.6938

Abstract

Social media has become a vital part of most modern human personal life. Twitter is one of the social media that was formed from the development of communication technology. A lot of social media gives users the freedom to express themselves. This facility is misused by users, so hate speech is spread. Designing a system to detect hate speech intelligently is needed. This study uses the hybrid deep learning (HDL) and solo deep learning (SDL) approach with the convolutional neural networks (CNN) and bidirectional gated recurrent unit (Bi-GRU) algorithm. There are 4 models built, namely CNN, Bi-GRU, CNN+Bi-GRU, and Bi-GRU+CNN. Term frequency-inverse document frequency (TF-IDF) is used for feature extraction, which is to get linguistic features to be analyzed and studied. FastText is used to perform feature expansion to minimize mismatched vocabulary. Four scenarios are run. CNN with an accuracy of 87.63%, Bi-GRU produces an accuracy of 87.46%, CNN+Bi-GRU provides an accuracy of 87.47% and Bi-GRU+CNN provides an accuracy of 87.34%. The ability of this approach to understand the context is qualified. HDL outperforms SDL in terms of n-gram type, where HDL can understand sentences broken down by hybrid n-gram types, namely Unigram-Bigram-Trigram which is a complex n-gram hybrid.
Prediksi Kepribadian Big Five Pengguna Twitter Menggunakan Metode Decision Tree dengan Pendekatan Semantik BERT Widyanto, Jammie Reyhan; Setiawan, Erwin Budi
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 8, No 2 (2024): April 2024
Publisher : Universitas Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v8i2.7311

Abstract

Individual personality can be seen easily in this day. There are several approaches in classifying personality, one of which is the big five personality. The big five personality consists of 5 dimensions, namely Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism. One way of knowing an individual's personality can be seen from their social media, because today almost all individuals have social media. One of the social media that is still widely used is Twitter. Twitter is a social media that contains tweets from each individual with a maximum of 280 characters per tweet. There have been several studies related to the big five personalities of Twitter users. Based on previous big five personality research problems, this study carried out predictions of the big five personalities of Twitter users using the Decision Tree Classification And Regression Tree (CART), Term Frequency Inverse Document Frequency (TF-IDF), Synthetic Minority Oversampling Technique (SMOTE), Linguistic Inquiry Word Count (LIWC), and Bidirectional Encoder Representations from Transformers (BERT) methods. The study aims to determine the application of the methods used in this study to the prediction of big five personalities and to get better accuracy results than previous studies. Data obtained from 315 twitter users and 672,866 tweets obtained from surveys and have been labeled with big five personalities, resulting in an accuracy of 97.62% from the baseline with an increase of 23.1%, by applying the CART+TF-IDF+SMOTE+LIWC+BERT method.
Hybrid Deep Learning with GloVe and Genetic Algorithm for Sentiment Analysis on X: 2024 Election Fitria, Mahrunissa Azmima Fitria; Setiawan, Erwin Budi
Scientific Journal of Informatics Vol. 11 No. 3: August 2024
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v11i3.8467

Abstract

Purpose: This research analyzes sentiment on the 2024 Indonesian Presidential Election using  data from X, employing a hybrid CNN-GRU model optimized with a Genetic Algorithm (GA) to improve accuracy and efficiency. It also explores GloVe feature expansion for enhanced sentiment classification, aiming for deeper insights into public opinion through advanced deep learning and optimization techniques. Methods: This research employs a deep learning approach that integrates Convolutional Neural Network (CNN) and Gated Recurrent Unit (GRU) models, Term Frequency-Inverse Document Frequency (TF-IDF), Global Vectors (GloVe), and GA. The dataset comprises  62,955 Indonesian tweets focusing on the 2024 General Election using various keywords. Result: The results indicated that the Genetic Algorithm significantly improved model accuracy. The CNN-GRU + GA model achieved 84.72% accuracy for the Top 10 ranking, a 1.94% increase from the base model. In comparison, the GRU-CNN + GA model achieved 84.69% accuracy for the Top 5 ranking, a 2.76% increase from the base model, demonstrating enhanced performance with GA across configurations. Novelty: This research uses a hybrid CNN-GRU model to introduce a novel sentiment analysis approach for the 2024 Indonesian Presidential Election. The model enhances accuracy by combining CNN's spatial feature extraction with GRU's temporal context capture and GloVe's word semantics. Genetic Algorithm optimization further refines performance. Comprehensive pre-processing ensures high-quality data, and focusing on election-specific keywords adds relevance. This study advances sentiment analysis through its innovative hybrid model, feature expansion, and optimization techniques.
Genetic Algorithm Optimization of Hybrid LSTM-AutoEncoder in Tourism Recommendation System Bayu Surya Dharma Sanjaya; Erwin Budi Setiawan
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.39760

Abstract

The tourism industry has rapid growth and has become one of the world's leading economic industries in recent years due to advances in information technology, such as the internet and social media. However, the overwhelming amount of information often makes it difficult for travelers to decide on their preferred travel destination. To address these issues, this research proposes a tourism recommendation system that combines Content-Based Filtering and Hybrid LSTM-AE, which is optimized using Genetic Algorithm (GA). There is no research that has developed a recommendation system using a combination of these methods and optimized using GA. So that this research can contribute to providing personalized recommendations and higher accuracy. The dataset consists of 9,504 ratings collected from the Ministry of Tourism and Creative Economy, Twitter, and web sources. The system was able to achieve a rating prediction accuracy of 96.82% by applying SMOTE to handle data imbalance and implementing a GA approach to the Hybrid LSTM-AE model. Accuracy has increased by 18.7% from the baseline model without using SMOTE and optimization. These results underscore that a strong integration between natural language processing and genetically optimized deep learning provides more accurate recommendations.
Optimizing the Learning Rate Hyperparameter for Hybrid BiLSTM-FFNN Model in a Tourism Recommendation System Aufa Ab'dil Mustofa; Erwin Budi Setiawan
JURNAL TEKNIK INFORMATIKA Vol 17, No 2: JURNAL TEKNIK INFORMATIKA
Publisher : Department of Informatics, Universitas Islam Negeri Syarif Hidayatullah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15408/jti.v17i2.40250

Abstract

Indonesia, with its abundant natural resources, is rich in captivating tourist attractions. Tourism, a vital economic sector, can be significantly influenced by digitalization through social media. However, the overwhelming amount of information available can confuse tourists when selecting suitable destinations. This research aims to develop a tourism recommendation system employing content-based filtering (CBF) and hybrid Bidirectional Long Short-Term Memory Feed-Forward Neural Network (BiLSTM-FFNN) model to assist tourists in making informed choices. The dataset comprises 9,504 rating matrices obtained from tweet data and reputable web sources. In various experiments, the hybrid BiLSTM-FFNN model demonstrated superior performance, achieving an accuracy of 93.36% following optimization with the Stochastic Gradient Descent (SGD) algorithm at a learning rate of about 0.193. The accuracy, after applying Synthetic Minority Over-sampling Technique (SMOTE) and fine-tuning the learning rate hyperparameter, showed a 14.3% improvement over the baseline model. This research contributes by developing a recommendation system method that integrates CBF and hybrid deep learning with high accuracy and provides a detailed analysis of optimization techniques and hyperparameter tuning.
Co-Authors Abdullah, Athallah Zacky Adriana, Kaysa Azzahra Adyatma, I Made Darma Cahya Agung Toto Wibowo Ahmad Zahri Ruhban Adam Aji Reksanegara Aji, Hilman Bayu Alvi Rahmy Royyan Anang Furkon RIfai Anindika Riska Intan Fauzy Annisa Aditsania Annisa Cahya Anggraeni Annisa Cahya Anggraeni Annisa Rahmaniar Dwi Pratiwi Arie Ardiyanti Arki Rifazka Arsytania, Ihsani Hawa Athirah Rifdha Aryani Aufa Ab'dil Mustofa Aydin, Raditya Bagas Teguh Imani Bayu Muhammad Iqbal Bayu Surya Dharma Sanjaya Billy Anthony Christian Martani Bintang Ramadhan, Rifaldy Brenda Irena Brigita Tenggehi Cahyudi, Ridho Maulana Crisanadenta Wintang Kencana Damarsari Cahyo Wilogo Daniar Dwi Pratiwi Daniar Dwi Pratiwi Dede Tarwidi Dedy Handriyadi Dery Anjas Ramadhan Dhinta Darmantoro Diaz Tiyasya Putra Dion Pratama Putra, Dion Pratama Diyas Puspandari Evi Dwi Wahyuni Faadhilah, Adhyasta Naufal Faidh Ilzam Nur Haq Farid, Husnul Khotimah Fathurahman Alhikmah Fathurahman Alhikmah Fazira Ansshory, Azrina Febiana Anistya Feby Ali Dzuhri Fhina Nhita Fhina Nhita Fida Nurmala Nugraha Fikri Maulana, Fikri Firdaus, Dzaki Afin Fitria, Mahrunissa Azmima Fitria Gde Bagus Janardana Abasan, I Ghina Dwi Salsabila Gita Safitri Grace Yohana Grace Yohana Hafiza, Annisaa Alya Hanif Reangga Alhakiem Hildan Fawwaz Naufal Husnul Khotimah Farid I Gusti Ayu Putu Sintha Deviya Yuliani I Kadek Candradinata Ibnu Sina, Muhammad Noer Ilyana Fadhilah Inggit Restu Illahi Inggit Restu Illahi Irma Palupi Isep Mumu Mubaroq Isman Kurniawan Kacaribu, Isabella Vichita Kamil, Ghani Kamil, Nabilla Kartika Prameswari Kemas Muslim Lhaksmana Kevin Usmayadhy Wijaya Khamil, Muhammad Khamil Khoirunnisa, Sanabila Luthfi Firmansah M. Arif Bijaksana Mahmud Imrona Mansel Lorenzo Nugraha Marissa Aflah Syahran Marissa Aflah Syahran Maulina Gustiani Tambunan Mela Mai Anggraini Moh Adi Ikfini M Moh. Hilman Fariz Muhammad Afif Raihan Muhammad Faiq Ardyanto Putro Muhammad Khiyarus Syiam Muhammad Kiko Aulia Reiki Muhammad Nur Ilyas Muhammad Shiba Kabul Muhammad Tsaqif Muhadzdzib Ramadhan Mustofa, Aufa Ab'dil Nabilla Kamil Naufal Adi Nugroho Naufal Razzak , Robith Nilla, Arliyanna Nindya Erlani, Dea Alfatihah Nisa Maulia Azahra Nur Ihsan Putra Munggaran Nuril Adlan , Muhammad Prahasto, Girindra Syukran Putri, Karina Khairunnisa Rafi Anandita Wicaksono Raisa Sianipar Rakhmat Rifaldy Ramadhan, Ananta Ihza Ramadhan, Helmi Sunjaya Ramadhani, Andi Nailul Izzah Ramadhanti, Windy Rayhan Rahmanda Refka Muhammad Furqon Regina Anatasya Rudiyanto Rendo Zenico Riaji, Dwi Hariyansyah Rizki Annas Sholehat Roji Ellandi Saleh, Abd Salsabil, Adinda Arwa Sanjaya, Bayu Surya Dharma Sari Ernawati Saut Sihol Ritonga Septian Nugraha Kudrat Septian Nugraha Kudrat Setiawan, Rizki Tri Shakina Rizkia Siti Inayah Putri Sri Suryani Sri Suryani Sukmawati Dwi Lestari Syafa Fahreza Syafa Fahreza Syahdan Naufal Nur Ihsan Valentino, Nico Wicaksono, Galih Wasis Wida Sofiya Widiarta, I Wayan Abi Widjayanto, Leonardus Adi Widyanto, Jammie Reyhan Wijaya, Kevin Usmayadhy Windy Ramadhanti Yoan Maria Vianny Yuliant Sibaroni Zahwa Dewi Artika Zakaria, Aditya Mahendra ZK Abdurahman Baizal