Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Journal of Applied Data Sciences

Online Measuring Feature for Batik Size Prediction using Mobile Device: A Potential Application for a Novelty Technology Wiradinata, Trianggoro; Saputri, Theresia Ratih Dewi; Sutanto, Richard Evan; Soekamto, Yosua Setyawan
Journal of Applied Data Sciences Vol 4, No 3: SEPTEMBER 2023
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v4i3.121

Abstract

The garment industry, particularly the batik sector, has experienced significant growth in Indonesia, coinciding with a rise in the number of online consumers who purchase batik products through e-Marketplaces. The observed upward trend in growth has seemingly presented certain obstacles, particularly in relation to product alignment and product information dissemination. Typically, batik entrepreneurs originate from micro, small, and medium enterprises (MSMEs) that have not adhered to global norms. Consequently, the sizes of batik products offered for sale sometimes exhibit inconsistencies. The issue of size discrepancies poses challenges for online consumers seeking to purchase batik products through e-commerce platforms. An effective approach to address this issue involves employing a smartphone camera to anticipate body proportions, specifically the length and width of those engaged in online shopping. Subsequently, by the utilization of machine learning techniques, the optimal batik size can be determined. The UKURIN feature was created as a response to a specific requirement. However, it is essential to establish a methodology for investigating the elements that impact the intention to use this feature. This will enable developers to prioritize their feature development strategies more effectively. A total of 179 participants completed an online questionnaire, and subsequent analysis was conducted utilizing the Extended Technology Acceptance Model framework. The findings indicate that Perceived Usefulness emerged as the most influential factor. Consequently, when designing and developing the novelty feature of UKURIN, it is imperative for designers and application developers to prioritize the benefits aspect.
Nature-based Hyperparameter Tuning of a Multilayer Perceptron Algorithm in Task Classification: A Case Study on Fear of Failure in Entrepreneurship Saputri, Theresia Ratih Dewi; Kurniawan, Edwin; Lestari, Caecilia Citra; Antonio, Tony
Journal of Applied Data Sciences Vol 6, No 2: MAY 2025
Publisher : Bright Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47738/jads.v6i2.539

Abstract

Entrepreneurship plays a key role in generating economic growth, encouraging innovation, and creating job opportunities. Understanding which demographic, psychological, and socio-economic factors contribute to fear of failure in entrepreneurship is essential to developing proper standards in entrepreneurship education and policy. However, it remains challenging to accurately classify these factors, especially when balancing model performance with model complexity in a multilayer perceptron algorithm. An effective model requires the correct parameter setting via a hyperparameter tuning process. Adjusting each hyperparameter by hand requires significant effort and knowledge, as there are frequently multiple combinations to consider. Furthermore, manual tuning is prone to human error and may overlook optimal configurations, resulting in inferior model performance and prediction accuracy. This study evaluates nature-inspired optimization techniques, including particle swarm optimization (PSO), genetic algorithm (GA), and grey wolf optimization (GWO). Several parameters are tuned in the present multilayer perceptron model, including the number of hidden layers and the number of nodes in each hidden layer, learning rate, and activation functions. The used dataset which consists of 39 features from 333 samples captured individual fears, loss score, and computational efficiency as the required amount of time for finding the best parameter combination. Model accuracy performance scores are 45.16%, 53.76%, and 58.61% for GA, PSO, and GWO, respectively. Meanwhile their execution time are 10 minutes, 27 minutes, and 23 minutes, for GA, PSO, and GWO, respectively. Experiment results further reveal that each optimization algorithm has distinct advantages: GA excels at speedy convergence, PSO provides a robust exploration of hyperparameter space, and GWO offers remarkable adaptability to complicated parameter interdependencies. This study provides empirical evidence for the efficacy of nature-inspired hyperparameter modification in improving multilayer perceptron performance for fear of failure categorization tasks.