Claim Missing Document
Check
Articles

Found 2 Documents
Search

ANALISIS POLA SEBARAN TUMPAHAN MINYAK MENTAH (CRUDE OIL) DENGAN PENDEKATAN MODEL HIDRODINAMIKA DAN SPILL ANALYSIS DI PERAIRAN BALONGAN, INDRAMAYU, JAWA BARAT Sinurat, Maya Eria Br; Ismanto, Aris; Hariyadi, Hariyadi
Journal of Oceanography Vol 5, No 2 (2016)
Publisher : Program Studi Oseanografi, Jurusan Ilmu Kelautan, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (10261.034 KB)

Abstract

Perairan Balongan Kabupaten Indramayu merupakan salah satu perairan yang dimanfaatkan untuk distribusi minyak mentah. Kegiatan distribusi minyak mentah tidak terlepas dari kegiatan bongkar muat kapal minyak pada sarana tambat. Kegiatan bongkar muat dapat mengakibatkan terjadinya masalah tumpahan minyak. Minyak mentah yang tumpah mengakibatkan penutupan fisik permukaan air dan memberikan dampak negatif bagi lingkungan. Penelitian ini dilakukan untuk mengetahui sebaran tumpahan minyak mentah di Perairan Balongan pada kondisi pasang surut sehingga dapat memberikan informasi kepada pembaca mengenai pola sebaran tumpahan minyak di Perairan Balongan, Indramayu, Jawa Barat. Metode penelitian ini menggunakan metode kuantitatif. Tahapan penelitian ini yaitu pengukuran data lapangan, pemodelan hidrodinamika dan pemodelan tumpahan minyak mentah. Penentuan titik pengukuran data arus menggunakan metode purposive sampling dan pengukuran data arus laut lapangan menggunakan metode Lagrange. Sebaran tumpahan minyak mentah dianalisis dengan pendekatan model hidrodinamika dan spill analysis. Simulasi model hidrodinamika di Perairan Balongan menghasilkan pola arus yang berotasi berlawanan dengan arah jarum jam dalam satu periode pasang surut. Simulasi model tumpahan minyak di Perairan Balongan menghasilkan dominan sebaran tumpahan minyak mentah ke arah barat-laut dan bergerak mengikuti arah arus sesuai kondisi pasang surut. Pada saat pasang, minyak mentah bergerak ke barat-laut sedangkan pada saat surut, minyak mentah bergerak ke arah tenggara.
Machine Learning-Based Mapping of Mangrove Forest Changes from Sentinel-2 in Balikpapan Bay, East Kalimantan Al Hakim, Muhammad Abdul Ghofur; Sinurat, Maya Eria Br; Zulkifle, Nurul Ain Najwa; Nurmawati; Mas’ud M, Ahmad Azwar
Jurnal Ilmu dan Teknologi Kelautan Tropis Vol. 17 No. 3 (2025): Jurnal Ilmu dan Teknologi Kelautan Tropis
Publisher : Department of Marine Science and Technology, Faculty of Fisheries and Marine Science, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/jitkt.17.3.67707

Abstract

Balikpapan Bay contains extensive mangrove forests which play an important role as habitat for a range of species and in providing a range of ecosystem services. In recent years, the mangrove forests around Balikpapan Bay are increasingly being lost and degraded due to development pressures. Thus, change detection in mangrove ecosystem has become highly relevant, as it can provide essential information to support the conservation practices and coastal management. This study aims to map mangrove forest change in Balikpapan Bay, East Kalimantan over a five-year period from Sentinel-2 using machine learning. Five machine learning algorithms (Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Tree (CART), K-Nearest Neighbors (KNN), and Minimum Distance), implemented on the Google Earth Engine platform, were evaluated to determine the most suitable method. The evaluation results indicate that RF, SVM, and CART yielded mangrove mapping accuracies of 80% or higher. Notably, the CART algorithm surpassed the other tested models, demonstrating the highest overall accuracy of 84% and a Kappa coefficient of 0.78. Mapping using the selected CART model shows that, between 2020 and 2025, mangrove areas in Balikpapan Bay decreased by 21% (2,906.17 ha). Approximately 97% (2,834.49 ha) of this loss is concentrated in the North Penajam Paser, which has a high rate of land conversion to built-up areas.