Claim Missing Document
Check
Articles

Found 3 Documents
Search

PERANCANGAN ARSITEKTUR ENTERPRISE SISTEM INFORMASI BAPENDA MENGGUNAKA TOGAF Selviana Yunita; Noorhikmah Fitriani; Febri Widianto
Journal of Innovation And Future Technology (IFTECH) Vol 5 No 1 (2023): Vol 5 No 1 (February 2023): Journal of Innovation and Future Technology (IFTECH)
Publisher : LPPM Unbaja

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47080/iftech.v5i1.2460

Abstract

The Regional Revenue Agency (BAPENDA) is an element that carries out supporting functions in the financial sector as well as co-administration tasks and the Regional Revenue Agency has the task of implementing regional policies in the field of regional tax revenue management where regional taxes are divided into two types: taxes managed by the state government and taxes managed by districts and cities. A tax manager, on the other hand, is run by a regional revenue agency or agency. The Regional Revenue Agency is an agency under and responsible to the Governor through the Regional Secretary of the Bappenda led by the Head of the Agency which is under and responsible to the Regent through the Regional Secretary. The Secretariat is led by a secretary who has the main task of assisting the Head of the Agency in carrying out the organization, administration, regional property, household, public relations, protocol, staffing, planning, performance and financial reporting. In planning the enterprise architecture at BAPENDA, Sampit City, the TOGAF ADM (Architecture Development Method) method is used as a system development guideline that will assist organizational activities. The enterprise architecture design includes the planning, design, implementation and maintenance of systems that will be used within the organization. This will ensure that the system used is in accordance with the needs of the organization and can assist in increasing efficiency and effectiveness in the organization's business activities.
Sistem Pendukung Keputusan Pemilihan Perumahan Di kota Sampit Menggunakan Metode GAP Lukman Bachtiar; Febri Widianto
Jutisi : Jurnal Ilmiah Teknik Informatika dan Sistem Informasi Vol 12, No 2: Agustus 2023
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/jutisi.v12i2.1496

Abstract

Sampit City is a growing city that is increasingly crowded with various housing. Because there are many housing locations available, the society of Sampit City often feel confused about choosing housing that suits their needs. This problem is exacerbated by the many house specifications offered by housing developers in Sampit City. Therefore, researchers created a decision support system to assist the people of Sampit City in choosing housing that suits their needs. This decision support system is designed to be able to provide an objective picture of housing in Sampit City. The method used in this study is the GAP/profile matching method. In this method, each criterion of the object will be assigned a value and managed using the GAP method to obtain results. By using this method, researchers can obtain housing ratings in Sampit City based on certain criteria. The results of this study will be in the form of housing rankings in Sampit City. With these results, the society of Sampit City can find out which housing is the best according to the criteria used. This will greatly assist the people of Sampit City in choosing housing that suits their needs.Keyword: Housing Selection; matching profile; Decision support system AbstrakKota Sampit merupakan sebuah kota berkembang yang semakin padat dengan berbagai perumahan. Karena terdapat banyak lokasi perumahan yang tersedia, masyarakat Kota Sampit seringkali merasa kebingungan dalam memilih perumahan yang sesuai dengan kebutuhan mereka. Masalah ini diperparah dengan adanya banyak spesifikasi rumah yang ditawarkan oleh para pengembang perumahan di Kota Sampit. Oleh karena itu, peneliti membuat sebuah sistem pendukung keputusan untuk membantu masyarakat Kota Sampit dalam memilih perumahan yang sesuai dengan kebutuhan mereka. Sistem pendukung keputusan ini dirancang agar dapat memberikan gambaran secara objektif terhadap perumahan-perumahan yang ada di Kota Sampit. Metode yang digunakan dalam penelitian ini adalah metode GAP/profile matching. Dalam metode ini, setiap kriteria dari objek akan diberi nilai dan dikelola dengan menggunakan metode GAP untuk mendapatkan hasil. Dengan menggunakan metode ini, peneliti dapat memperoleh pemeringkatan perumahan yang ada di Kota Sampit berdasarkan kriteria-kriteria tertentu. Hasil dari penelitian ini nantinya akan berupa pemeringkatan perumahan yang ada di Kota Sampit. Dengan adanya hasil ini, masyarakat Kota Sampit dapat mengetahui perumahan mana yang terbaik dari kriteria-kriteria yang digunakan. Hal ini akan sangat membantu masyarakat Kota Sampit dalam memilih perumahan yang sesuai dengan kebutuhan mereka.
Application of K-Means and K-Medoids Algorithms for Clustering Chili Commodity Trade Distribution in Indonesia Febri Widianto; Elika Thea Kirana; Nurahman; Depi Rusda
Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM) Vol. 9 No. 2 (2024)
Publisher : Fakultas Teknik Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/jtiulm.v9i2.220

Abstract

Chili is one of the important commodities in agriculture and food, which is a product of the capsicum plant that has significant economic value in international trade. This study aims to identify an effective distribution strategy for red chili commodities in Indonesia through the use of the K-means and K-medoids clustering algorithms. The data used comes from the Central Statistics Agency (BPS) in 2022, including parameters-production, consumption, surplus/deficit, trade margin, and the impact of market operations and natural disasters. The implementation of K-means and K-medoids uses the RapidMiner application to form six provincial clusters based on the characteristics of red chili distribution. The results of the analysis show that K-medoids consistently outperforms K-means in cluster formation, with lower Davies-Bouldin Index (DBI) values ​​indicating better clusters. The conclusion of this study confirms that K-medoids is more effective in grouping red chili distribution areas in Indonesia, potentially providing a stronger foundation for strategic decision making in the distribution management of this commodity. Therefore, this study recommends the use of K-medoids as a more appropriate approach for planning and implementing red chili distribution strategies in Indonesia.