Widyaningtias Widyaningtias, Widyaningtias
Kelompok Keahlian Teknik Sumber Daya Air, Fakultas Teknik Sipil dan Lingkungan. Institut Teknologi Bandung, Jl. Ganesha No. 10 Bandung.

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

Gerusan yang Terjadi di Sekitar Abutment Tanpa Sayap pada Jembatan (Kajian Laboratorium) Soeharno, Agung Wiyono Agung Wiyono Hadi; Widyaningtias, Widyaningtias
Jurnal Teknik Sipil Vol 14, No 4 (2007)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (509.626 KB)

Abstract

Abstrak. Sungai sebagai salah satu sumber daya air yang sangat penting bagi kehidupan manusia. Pemanfaatan sungai yang tidak ramah lingkungan menjadi salah satu masalah yang belum terpecahkan hingga saat ini. Termasuk juga otimalisasi sungai sebagai sarana transportasi air, baik secara langsung memanfaatkan aliran sungai, ataupun memanfaatkan badan sungai sebagai penopang jembatan. Salah satu bagian terpenting dari jembatan adalah abutment jembatan. Abutment jembatan adalah struktur di ujung-ujung jembatan yang berfungsi sebagai kaki jembatan dan tumpuan atau penyalur beban, dalam hal ini struktur tersebut masuk ke dalam sungai. Pemodelan suatu saluran terbuka dengan pemasangan abutment pada empat titik, yaitu pada saluran lurus, saluran dengan tikungan 180o, saluran lurus diantara tikungan, dan saluran dengan tikungan 90o. Tujuan pemodelan ini adalah untuk mengetahui besar gerusan yang terjadi pada sungai lurus dan sungai dengan tikungan. Model ini akan dialiri air dengan beberapa debit yang berbeda. Kedalaman gerusan dan kecepatan aliran yang terjadi akan diukur. Data kedalaman gerusan dan kecepatan aliran digunakan untuk menghitung gerusan maupun sedimentasi yang terjadi dengan menggunakan beberapa formula, yaitu Formula Froehlich, Laursen, Melville. Hasil dari perhitungan dari masing-masing formula tersebut dibandingkan dengan pengamatan fisik, perbedaan yang terjadi merupakan representasi prosentase kesalahan dari setiap formula yang digunakan.Abstract. An example of water resource is the river which is vital for human life. River exploitation is an environmental problem which has not been solved. This problem include river as a mean of transport, either directly using the stream flow, or using the bank as bridge foundation. One of the most important factors of the bridge is the abutment. The abutment is a structure, build at the edge of the bridge. Abutment is designed to hold the weight of the bridge and over the bridge. The structure of the abutment usually planted in to the river. The model is build as an open channel flow with abutment at four points of the channel, straight channel, 180 curves, straight channel between curve, and 90 curves. The purpose is to model and measure the scorching at straight and curve river flow. The model will be watered with different debits. The flow and the scorch depth will be measured. The data measured will be used to calculate scour and sedimentation using several formulas, Froehlich, Laursen, and Melville. The result from each calculation will be compared with the observation data. Error will be calculated from the differences between the calculation and observation data.
Perbandingan Gerusan Lokal yang Terjadi di Sekitar Abutment Dinding Vertikal Tanpa Sayap dan dengan Sayap pada Saluran Lurus, Tikungan 90°, dan 180° (Kajian Laboratorium) Wiyono, Agung; Nugroho, Joko; Widyaningtias, Widyaningtias; Zaidun, Eka Risma
Jurnal Teknik Sipil Vol 18, No 1 (2011)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (563.524 KB)

Abstract

Abstrak. Fenomena kerusakan jembatan akibat gerusan pada pondasi pier atau abutment sulit diamati secara langsung. Salah satu metode untuk menyederhanakan adalah dengan pemodelan fisik di laboratorium. Tujuan penulisan jurnal ini adalah membandingkan gerusan yang terjadi di sekitar abutment dinding vertikal tanpa sayap dan dengan sayap pada saluran lurus, tikungan 90o, dan 180o. Perbandingan difokuskan pada gerusan lokal jenis live -bed scour dan terjadinya transportasi sedimen sepanjang pengaliran debit 4, 5, 6, dan 7 liter/detik pada model saluran. Penelitian dilakukan dengan membangun model saluran terbuka dengan dinding fiberglass dan dasar saluran terbuat dari semen, saluran memiliki bagian lurus serta sudut tikungan 90° dan 180°. Hasil parameter fisik berupa kecepatan dan kedalaman gerusan, dibandingkan secara analitik dengan menggunakan Formula Laursen (1960), Froehlich (1989), dan Mellvile (1997). Hasil perbandingan menunjukkan bahwa pada abutment dinding vertikal tanpa sayap, hasil perhitungan Formula Laursen paling mendekati hasil pengamatan dengan persentase kesalahan 20,02%. Sedangkan untuk abutment dinding vertikal dengan sayap, persentase kesalahan terkecil sebesar 28,17%, dengan menggunakan Formula Froehlich (1989). Untuk abutment dinding vertikal tanpa sayap, kedalaman gerusan maksimum terjadi di sekitar hulu abutment, dan segmen tengah abutment untuk abutment dinding vertikal dengan sayap. Untuk kedua tipe abutment sedimentasi tertinggi terjadi di sebelah hilir.Abstract. The damage phenomenon of the bridge due to scour on pier foundation or abutment is difficult to observe directly. One of the methods to simplify this phenomenon is modeling in the laboratory. The purpose of this research is to compare scouring around vertical wall and vertical wing-wall abutment in straight channel, 90o, and 180o curve channel. Scouring comparison focused on the live-bed scour and the occurrence of sediment transport along the 4, 5, 6, and 7 liters / second discharge on the channel model. Results of physical parameters such as velocity and depth of scouring compared with the analytical using Laursen (1960), Froehlich (1989), and Mellvile (1997) formula. The result from each calculation will be compared with the observation data. The resultshows that maximum scouring for vertical wall and vertical wing-wall abutment occurred in upstream and middle of abutment respectively. Furthermore, sedimentation for both of types is around downstream of abutment. From the analytical comparison, Laursen’s Formula gives closer accuracy for vertical wall abutment than others formulas, with the percentage of error is about 20,02%. While, Froehlich’s Formula gives 28,17% for wing-wall abutment.
Perbandingan Gerusan Lokal yang Terjadi di Sekitar Abutment Dinding Vertikal Tanpa Sayap dan dengan Sayap pada Saluran Lurus, Tikungan 90°, dan 180° (Kajian Laboratorium) Agung Wiyono; Joko Nugroho; Widyaningtias Widyaningtias; Eka Risma Zaidun
Jurnal Teknik Sipil Vol 18 No 1 (2011)
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jts.2011.18.1.4

Abstract

Abstrak. Fenomena kerusakan jembatan akibat gerusan pada pondasi pier atau abutment sulit diamati secara langsung. Salah satu metode untuk menyederhanakan adalah dengan pemodelan fisik di laboratorium. Tujuan penulisan jurnal ini adalah membandingkan gerusan yang terjadi di sekitar abutment dinding vertikal tanpa sayap dan dengan sayap pada saluran lurus, tikungan 90o, dan 180o. Perbandingan difokuskan pada gerusan lokal jenis live -bed scour dan terjadinya transportasi sedimen sepanjang pengaliran debit 4, 5, 6, dan 7 liter/detik pada model saluran. Penelitian dilakukan dengan membangun model saluran terbuka dengan dinding fiberglass dan dasar saluran terbuat dari semen, saluran memiliki bagian lurus serta sudut tikungan 90° dan 180°. Hasil parameter fisik berupa kecepatan dan kedalaman gerusan, dibandingkan secara analitik dengan menggunakan Formula Laursen (1960), Froehlich (1989), dan Mellvile (1997). Hasil perbandingan menunjukkan bahwa pada abutment dinding vertikal tanpa sayap, hasil perhitungan Formula Laursen paling mendekati hasil pengamatan dengan persentase kesalahan 20,02%. Sedangkan untuk abutment dinding vertikal dengan sayap, persentase kesalahan terkecil sebesar 28,17%, dengan menggunakan Formula Froehlich (1989). Untuk abutment dinding vertikal tanpa sayap, kedalaman gerusan maksimum terjadi di sekitar hulu abutment, dan segmen tengah abutment untuk abutment dinding vertikal dengan sayap. Untuk kedua tipe abutment sedimentasi tertinggi terjadi di sebelah hilir. Abstract. The damage phenomenon of the bridge due to scour on pier foundation or abutment is difficult to observe directly. One of the methods to simplify this phenomenon is modeling in the laboratory. The purpose of this research is to compare scouring around vertical wall and vertical wing-wall abutment in straight channel, 90o, and 180o curve channel. Scouring comparison focused on the live-bed scour and the occurrence of sediment transport along the 4, 5, 6, and 7 liters / second discharge on the channel model. Results of physical parameters such as velocity and depth of scouring compared with the analytical using Laursen (1960), Froehlich (1989), and Mellvile (1997) formula. The result from each calculation will be compared with the observation data. The result shows that maximum scouring for vertical wall and vertical wing-wall abutment occurred in upstream and middle of abutment respectively. Furthermore, sedimentation for both of types is around downstream of abutment. From the analytical comparison, Laursen’s Formula gives closer accuracy for vertical wall abutment than others formulas, with the percentage of error is about 20,02%. While, Froehlich’s Formula gives 28,17% for wing-wall abutment.
Struktur Berpori Sebagai Upaya Penanggulangan Erosi di Pantai Utara Jawa: Studi Kasus Pantai Demak, Jawa Tengah Widyaningtias Widyaningtias; Ingerawi Sekaring Bumi; Joko Nugroho; M. Bagus Adityawan; Arno Adi Kuntoro
Jurnal Teknik Sipil Vol 28 No 3 (2021): Jurnal Teknik Sipil
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jts.2021.28.3.9

Abstract

Abstrak Perubahan garis pantai merupakan salah satu masalah yang dihadapi masyarakat di kawasan pesisir utara Jawa, Indonesia. Hilangnya sabuk mangrove di kawasan pantai secara bertahap menyebabkan terjadinya erosi pantai. Untuk mengatasi masalah tersebut, konsep adaptif menggunakan Building with Nature (BwN) mulai dikembangkan di beberapa lokasi di pantai utara Jawa. Konsep ini diharapkan dapat menjadi solusi permasalahan erosi dengan memanfaatkan proses alam dan tetap memperhatikan kelangsungan ekosistem setempat, yaitu dengan pembangunan struktur berpori (permeable structure). Di kawasan pesisir Demak, pembangunan struktur berpori dimulai sejak 2013 di Desa Bogorame dan mampu menahan sedimen setinggi 45 cm dalam 1.5 tahun. Pemodelan akan menggunakan perangkat lunak Delft3D dengan meggabungkan antara model Delft3D-Flow dan Delft3D-Wave. Pemodelan dilakukan dengan menempatkan thin dam sebagai struktur berpori sesuai kondisi eksisting di lapangan. Simulasi akan dilakukan pada musim hujan dan kemarau, dengan memasukkan input gelombang signifikan pada kedua musim tersebut. Berdasarkan simulasi, dapat disimpulkan bahwa pada musim penghujan, struktur berpori menangkap lebih banyak sedimen dibandingkan pada musim kemarau. Pada beberapa lokasi, erosi terjadi saat musim penghujan, namun akan terisi kembali pada saat musim kemarau. Lebih lanjut lagi, konsep adaptif dari struktur berpori ini diharapkan dapat mempercepat restorasi pantai di kawasan pesisir Demak. Kata-kata Kunci: DELFT3D, erosi pantai, struktur berpori. Abstract Shoreline degradation in North Java, Indonesia, becomes one of severe problem that have to be overcome by habitat along its coastal. The gradually vanishing of mangrove greenbelt indicates starting of coastal erosion. To solve that problem, the adaptive concept using Building with Nature (BwN) has been started to develop in some region in North Java Coastal area. This concept is expected as one of solution to restore coastal erosion by enhancing natural process. The application of permeable structures is proposed. The construction of permeable structures was started since 2013 in Bogorame area and has been trapped sediment up to 45 cm in 1.5 years. The simulation will be conducted using Delft3D by coupling between Delft3D-Flow and Delft3D-Wave. The model is simulated by using thin dams as permeable structures as in existing field condition, and will be modeled in wet and dry seasons. Based on simulations, it can be concluded that in wet season, permeable structures can trap more sediment compared with in dry season. In some location erosion occurs. However, it can be recharged by sediment transport during dry season. Furthermore, sustainability of this adaptive concept is expected to enhance the coastal restoration in Demak coastal area. Keywords: DELFT3D, coastal erosion, permeable structure.  
Tsunami Early Warning System Based on Maritime Wireless Communication Aryanti Karlina Nurendyastuti; Mochamad Mardi Marta Dinata; Arumjeni Mitayani; Muhammad Rizki Purnama; Mohammad Bagus Adityawan; Mohammad Farid; Arno Adi Kuntoro; Widyaningtias
Journal of the Civil Engineering Forum Vol. 8 No. 2 (May 2022)
Publisher : Department of Civil and Environmental Engineering, Faculty of Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1552.707 KB) | DOI: 10.22146/jcef.2878

Abstract

Tsunami buoy, linked to satellite, is commonly used as a tsunami early warning system but has been discovered to have several drawbacks such as the need for approximately 5 minutes to issue an early warning for a tsunami after detecting the initial wave as well as its fragility. It was also reported that the twenty-two buoys placed in the Indonesian seas from 2012 to 2018 were damaged and missing. Therefore, this study proposes a new method for tsunami early warning by integrating ship-to-ship maritime wireless communication. It is important to note that vessels or fishing boats with over 30 GT have the ability to travel more than 100 nmi (approximately 180 km) from the shoreline and can be equipped with point-to-multipoint VHF radio communication. Meanwhile, smaller boats on the fishing ground located approximately 2-5 km from the shore can use a WiFi network to communicate like a wireless mesh while the existing terrestrial network can be used for the ship-to-shore communication between boats and land stations. This system is expected to provide significant benefits for a fishing town such as Pangandaran, West Java, Indonesia which is directly facing Java Megathrust in the Indian Ocean. Therefore, a tsunami numerical simulation was conducted in this study using Shallow Water Equation which involved a hypothetical tsunami simulated from the possible fault source which is approximately 250 km from the source. Moreover, the vessel’s location was assumed to be in line with the fishing ground while the arrival time of the tsunami was estimated from the model to be 22.5 minutes and compared to the relay time of the proposed system which was approximately 5.4 seconds. This is faster in terms of delay than the existing system which relays information through satellite at approximately 5 minutes in an ideal condition and also has the ability to reduce the need for tsunami buoys.
Prediksi Distribusi Sedimentasi Terhadap Usia Guna Waduk Ameroro, Sulawesi Tenggara Indradjati Rachmatullah; Dantje Kardana Natakusumah; Widyaningtias Widyaningtias; Arno Adi Kuntoro; Eka Oktariyanto Nugroho; Agung Permana; Herdy Setiawan; Dyah Widyaningrum
Journal on Education Vol 6 No 2 (2024): Journal on Education: Volume 6 Nomor 2 Tahun 2024
Publisher : Departement of Mathematics Education

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/joe.v6i2.5104

Abstract

The Ameroro River experiences significant sedimentation rates from year to year, along with rapid land cover changes. Due to the considerable benefits of the Ameroro River for the sustainability of life in Konawe Regency, it was decided to construct the Ameroro Reservoir as a means to fulfill irrigation needs and provide raw water for the community. Given the high sedimentation in reservoirs in Indonesia, it rapidly accelerates the aging of the Reservoir. One of the issues is the inadequate representation of sediment distribution in the reservoir, reducing the effectiveness of sediment control and management in the Reservoir. Predictions using HEC-RAS 2D reveal the sediment distribution in the Ameroro reservoir at locations STA 13872 in the upstream river and STA 4446 at the inlet, which is 7.7 km from the main river length from the Reservoir's axis and 4.5 km from the inlet river length. Sedimentation rates, based on riverbed material modeling and land cover, show an influx of sediment into the reservoir at 1,192,015 m3/year, comprising 662,275 m3/year from the upstream river and 529,739 m3/year from the inlet river. Calculations using the sedimentation deposition composition method and Brune's trap efficiency method indicate that the original Reservoir's lifespan of 107 years will be reduced to 85 years, deviating by 22 years from the plan. This implies that the Reservoir will reach the end of its useful life sooner than anticipated.
Pengembangan Sistem Penyediaan Air Bersih Pedesaan di Desa Wai U, Kecamatan Mangoli Tengah, Kabupaten Kepulauan Sula, Provinsi Maluku Utara Audrienne, Resanti; Wicaksono, Rofidzias Siswo; Kholik, Almira Abdul; Purnama, Vicky Candra; Kedafota, Fahrul; Widodo, Widodo; Permana, Salsa Alfadhila; Farid, Mohammad; Adityawan, M. Bagus; Widyaningtias, Widyaningtias; Chaidar, Ana Nurganah; Adi Kuntoro, Arno
Agrokreatif: Jurnal Ilmiah Pengabdian kepada Masyarakat Vol. 11 No. 1 (2025): Agrokreatif Jurnal Ilmiah Pengabdian kepada Masyarakat
Publisher : Institut Pertanian Bogor

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/agrokreatif.11.1.133-144

Abstract

Wai U Village has a problem with the limited capacity of the village's clean water supply system. This community service activity aims to retrofit the existing clean water supply system, which previously experienced technical problems, and to increase the capacity of the existing system. The implementation method consists of pre-site visit interviews, field surveys, geoelectric surveys to determine aquifer potential, and water quality laboratory tests for drinking water standards. The results of the geoelectric data analysis show that the potential aquifer was located at 30m below the surface. The water quality test results show that the groundwater quality generally meets the class-1 water quality standards for drinking water. Field survey activities were followed by the construction of groundwater wells, water towers, water reservoirs, pumps, and a series of pipes connecting the new water sources to the existing pipe distribution network of Wai U Village. The final result of this activity was the improvement of the clean water supply capacity in Wai U Village, which was able to connect houses that previously depended on water sources from dug wells. There are 69 houses in the Wai U Village. Before experiencing technical problems, the existing water supply system (Pamsimas) in Wai U Village was connected to 38 houses (55%). The construction of new water supply infrastructure was connected to the remaining 31 houses (45%); thus, this activity has succeeded in increasing clean water network connections by almost 100% in Wai U Village. However, several house connections require rehabilitation. This activity is expected to be one of the real contributions of universities to achieving water, food, and energy security in Wai U Village, which is categorized as a 3T region.
Study of Sedimentation Control on Bangga River, Palu Watershed, Central Sulawesi Savitri, Fanny Aliza; Bagus Adityawan , Mohammad; Widyaningtias, Widyaningtias
Jurnal Teknik Sipil Vol 30 No 2 (2023): Jurnal Teknik Sipil
Publisher : Institut Teknologi Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.5614/jts.2023.30.2.3

Abstract

Abstract. Bangga River is located in a mountainous area in the Palu River Basin with an area of 74.82 km2 and a river lengthof 16.97 km. Flood with the approximated water depth of 3 m occur in Bangga’s Village. The cliffs upstream of theBangga River areunstable and can easily collapse due to the disaster. Ministry of Public Works and Housingcontrol through Sabo dam’s structure. This study aims to analyze the performance of sabo dam’s structure inreducing sediments and the floods. Analysis and modeling using two scenarios, before and after the sabo damstructure’s control was built, using HEC-RAS Software with purposeful 1D modeling to simulate flow patterns, totalsediment. The HEC-RAS simulation shows that the water surface is stood at 2.1 m depth in the existing condition.Sabo dam structure can reduce of sediment transport, which was computed according to Engelund (81%reduction), Mayer Peter Muller (MPM) with 92% reduction, and Yang (91% sediment yields reduction). So, thesabo dam's structure is not merely utilized to retain the sediment, but it can reduce potential flooding in the future.Keywords: Sedimentation, sediment control building, HEC-RAS, sabo dam, flood. Abstrak. Sungai Bangga terletak di daerah pegunungan di DAS Palu dengan luas 74,82 km2 dan memiliki panjang sungai16,97 km. Banjir dengan kedalaman air + 3 m terjadi di Desa Bangga. Tebing-tebing di hulu Sungai Bangga tidakstabil dan mudah runtuh akibat bencana. Kementerian Pekerjaan Umum dan Perumahan Rakyat mengontrolmelalui bangunan Sabo dam. Penelitian ini bertujuan untuk menganalisis kinerja bangunan Sabo dam dalammereduksi sedimen dan banjir. Analisis dan pemodelan dilakukan dengan dua skenario yaitu sebelum dan sesudahbangunan sabo dam terbangun, menggunakan Software HEC-RAS dengan pemodelan 1D yang bertujuan untukmensimulasikan pola aliran dan total sedimen. Simulasi HEC-RAS menunjukkan bahwa kedalaman air beradapada 2,1 m pada kondisi eksisting. Bangunan sabo dam dapat mereduksi transpor sedimen, yang dihitung menurutbeberap rumus yaitu Engelund (reduksi 81%), Mayer Peter Muller (MPM) dengan reduksi 92%, dan Yang (reduksi91%). Jadi, bangunan sabo dam tidak hanya dimanfaatkan untuk menahan sedimen, tetapi dapat mengurangipotensi banjir di masa depan. Kata-kata kunci: Sedimentasi, bangunan pengontrol sedimen, HEC-RAS, sabo dam, banjir.