Enny Fachriyah
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang|Diponegoro University|Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Antioxidant Activity of Flavonoids from Cassava Leaves (Manihot esculenta Crantz) Enny Fachriyah; Ifan Bagus Haryanto; Dewi Kusrini; Purbowatiningrum Ria Sarjono; Ngadiwiyana Ngadiwiyana
Jurnal Kimia Sains dan Aplikasi Vol 26, No 1 (2023): Volume 26 Issue 1 Year 2023
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jksa.26.1.10-18

Abstract

The community uses cassava leaves for cooking because of their high protein content, β-carotene, Fe, Mg, Zn, S, Ca, Zn, Ni, and K. Cassava leaves contain various secondary metabolites, including flavonoids, saponins, tannins, phenolics, steroids, anthocyanins, and anthraquinones. The antioxidant activity of flavonoid compounds in cassava leaves (Manihot esculenta Crantz) has been successfully investigated. This study consisted of six stages: the preparation of ethanol extract of cassava leaves, phytochemical screening, determination of total flavonoid content in the extract, isolation of flavonoids, and purity testing of flavonoid isolates using the chromatographic method, identification of the structure of pure flavonoid isolates using a UV-Vis spectrophotometer with the addition of a shear reagent, FTIR, and LC-MS/MS. As well as test the antioxidant activity using the DPPH method. The yield of ethanol extract from cassava leaf in this study was 14.67%. The results of the phytochemical screening showed that the cassava leaves and the ethanol extract of cassava leaves contained alkaloids, flavonoids, saponins, tannins, quinones, steroids, phenolics, and triterpenoids. The total content of flavonoids in the ethanol extract was 35.71 mg EQ/g extract. UV-Vis, FTIR, and LC-MS/MS analysis revealed that the flavonoid isolate was quercetin. The results of the antioxidant activity of the ethanol extract and BC isolate showed IC50 of 81.76 ± 0.505 mg/L and 77.85 ± 4.708 mg/L.
Encapsulation of Cinnamaldehyde using Chitosan: Stability, Mucoadhesive and Cinnamaldehyde Release Purbowatiningrum Ria Sarjono; Ngadiwiyana Ngadiwiyana; Enny Fachriyah; Ismiyarto Ismiyarto; Nor Basid Adiwibawa Prasetya; Khikmah Khikmah
Jurnal Kimia Sains dan Aplikasi Vol 21, No 4 (2018): volume 21 Issue 4 Year 2018
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2829.242 KB) | DOI: 10.14710/jksa.21.4.175-181

Abstract

Cinnamaldehyde contained in cinnamon oil is useful as an antidiabetic; however, it has very low oral bioavailability. One effort to increase oral bioavailability of cinnamaldehyde is by encapsulation using chitosan. Encapsulation of cinnamaldehyde in chitosan has been successfully made in the form of powder. The aim of this study was to obtain data of stability, mucoadhesive and cinnamaldehyde release from cinnamaldehyde encapsulated chitosan. Stability tests were performed physically and chemically. Mucoadhesive tests were carried out in vitro in two steps, which were granule fabrication and then mucoadhesive test. The results showed that the levels of cinnamaldehyde decreased within 4 weeks, from the first to the fourth week 100%; 99.87%; 98.85%; 97.33%, respectively. Cinnamaldehyde powder did not change significantly in specific gravity, pH, centrifugation and organoleptic after a month. The release precentage of cinnamaldehyde in acidic media pH 1.2 for 180 minutes was 83.4%, whereas in alkaline media pH 7.4 for 360 minutes was 61%. The cinnamaldehyde encapsulated chitosan nanoparticle powder performed mucoadhesive capacity in the gastric mucosa and in the intestinal mucosa of 91.5% and 84.61%, respectively.