Nor Basid Adiwibawa Prasetya
Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University, Jl. Prof. Soedarto, SH., Tembalang, Semarang|Diponegoro University|Indonesia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search

Encapsulation of Cinnamaldehyde using Chitosan: Stability, Mucoadhesive and Cinnamaldehyde Release Purbowatiningrum Ria Sarjono; Ngadiwiyana Ngadiwiyana; Enny Fachriyah; Ismiyarto Ismiyarto; Nor Basid Adiwibawa Prasetya; Khikmah Khikmah
Jurnal Kimia Sains dan Aplikasi Vol 21, No 4 (2018): volume 21 Issue 4 Year 2018
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2829.242 KB) | DOI: 10.14710/jksa.21.4.175-181

Abstract

Cinnamaldehyde contained in cinnamon oil is useful as an antidiabetic; however, it has very low oral bioavailability. One effort to increase oral bioavailability of cinnamaldehyde is by encapsulation using chitosan. Encapsulation of cinnamaldehyde in chitosan has been successfully made in the form of powder. The aim of this study was to obtain data of stability, mucoadhesive and cinnamaldehyde release from cinnamaldehyde encapsulated chitosan. Stability tests were performed physically and chemically. Mucoadhesive tests were carried out in vitro in two steps, which were granule fabrication and then mucoadhesive test. The results showed that the levels of cinnamaldehyde decreased within 4 weeks, from the first to the fourth week 100%; 99.87%; 98.85%; 97.33%, respectively. Cinnamaldehyde powder did not change significantly in specific gravity, pH, centrifugation and organoleptic after a month. The release precentage of cinnamaldehyde in acidic media pH 1.2 for 180 minutes was 83.4%, whereas in alkaline media pH 7.4 for 360 minutes was 61%. The cinnamaldehyde encapsulated chitosan nanoparticle powder performed mucoadhesive capacity in the gastric mucosa and in the intestinal mucosa of 91.5% and 84.61%, respectively.
Eco-Friendly Chitosan-Based Biodiesel Heterogeneous Catalyst Support Membrane Retno Ariadi Lusiana; Rahmad Nuryanto; Nor Basid Adiwibawa Prasetya; Resa Putri Sherina; Dilla Dayanti
Jurnal Kimia Sains dan Aplikasi Vol 26, No 2 (2023): Volume 26 Issue 2 Year 2023
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jksa.26.2.39-49

Abstract

A chitosan-polyvinyl pyrrolidone K-30 (Cs-PVP.K30) membrane was prepared as a heterogeneous catalyst supporting membrane in the transesterification process in the production of biodiesel from palm oil and methanol through the blend reaction between chitosan (Cs) and polyvinyl pyrrolidone K-30 polymer (PVP K-30). Several membranes were characterized by their physicochemical and catalytic properties. Based on physicochemical data, it was found that including the carbonyl group from PVP K-30 into the chitosan framework correlated with an increase in porosity, hydrophilicity, water absorption, and the degree of swelling of the membrane. The results of the analysis using Fourier Transmittance Infra-red (FTIR) showed the spectra of carbonyl (-C=O) and hydroxyl (-OH) groups at wavenumbers 1648 cm-1 and 3363 cm-1, which shows that the reaction of chitosan alloy with PVP K-30 has been successfully carried out. The catalytic site of the Cs-PVP K30-NaOH membrane in the biodiesel production process was studied under several conversion conditions. It was found that the conversion of biodiesel reached 93.90% with a reaction time of 90 minutes, a temperature of 65°C, and an oil/methanol mole ratio of 1:7.
Effects of Additional Polyvinyl Alcohol (PVA) on the Physiochemical Properties of Chitosan-Glutaraldehyde-Gelatine Bioplastic Muh Jufri; Retno Ariadi Lusiana; Nor Basid Adiwibawa Prasetya
Jurnal Kimia Sains dan Aplikasi Vol 25, No 3 (2022): Volume 25 Issue 3 Year 2022
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (674.358 KB) | DOI: 10.14710/jksa.25.3.130-136

Abstract

This study investigated the effects of additional PVA on the physicochemical properties of the chitosan-glutaraldehyde/gelatin bioplastic composite. The best results of the bioplastic film were obtained at a concentration of 3% PVA, with a tensile strength value of 3.3 MPa, flexibility reached 54%, a thickness value of 0.24 mm, percentage of inhibition against E. coli and S. aureus was 21.8% and 8.8% respectively. The FTIR spectrum results showed no change in the wavenumber of the chitosan and gelatin chitosan spectrum with OH, CO, and NH functional groups. The spectrum indicates that only physical interactions occurred. The bioplastics are similar in thermal stability and have slight differences in bioplastic morphological contours. The average thickness of the bioplastics is between 0.20–0.26 mm. Based on the Japanese Industrial Standard (JIS), all bioplastics meet the standard thickness, which is < 0.25 mm, excluding chitosan, which has a thickness of 0.26 mm. The addition of PVA into the bioplastics structure increased the hydrophobicity, pH resistance, and flexibility of bioplastics. Meanwhile, additional PVA decreased biodegradability, only degraded by 60% at eight weeks. Based on these data, not all bioplastics can meet the degradation time criteria set by the international bioplastic standard ASTM D-6002, that bioplastics must be 100% degraded within eight weeks. Bioplastics made from chitosan and chitosan-gelatin have been degraded by 90% for 48 weeks. Based on the antibacterial properties, the inclusion of PVA into the bioplastic structure enhances the antibacterial properties.
In-Vitro Study of Polysulfone-polyethylene glycol/chitosan (PEG-PSf/CS) Membranes for Urea and Creatinine Permeation Retno Ariadi Lusiana; Nurwarrohman Andre Sasongko; Vivi Dia A. Sangkota; Nor Basid Adiwibawa Prasetya; Parsaoran Siahaan; Agung Abadi Kiswandono; Mohd Hafiz Dzarfan Othman
Jurnal Kimia Sains dan Aplikasi Vol 23, No 8 (2020): Volume 23 Issue 8 Year 2020
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (36.56 KB) | DOI: 10.14710/jksa.23.8.283-289

Abstract

High concentrations of creatinine and urea in the blood can be removed by dialysis using semipermeable membranes that are selective for certain species and hold other species through diffusion processes. This ability requires a membrane that has an active side, which functions as a targeted species identifier. The membrane must be biocompatible because the membrane will be in direct contact with the body’s biological systems. The membrane material that is made must be acceptable to the blood system so that there is no rejection from the body and have a large contact area to obtain an effective diffusion process. For this reason, a hollow fiber membrane (HFM) is needed. One of the synthetic polymers used as the base material for HFM is PSf. PSf has mechanical strength, heat resistance, and is easily formed into HFM. However, PSf has disadvantages such as lack of active side and less compatible with blood due to its hydrophobic properties. Modification using PEG and chitosan will reduce the hydrophobicity of the PSf. Membrane results were analyzed the physical, chemical, and transportability for urea and creatinine. The results of functional group characterization by FTIR show that the modification reaction was successfully carried out on polysulfone to produce PEG-PSf/CS. The modification succeeded in making the PSf membrane more hydrophilic, as evidenced by a decrease in the contact angle from 69.4° (PSf) to 53° (PEG-PSf/CS). Water uptake capability increases to 609%, and membrane porosity increases porosity increased from 72 to 83%. The water flux is also increased. Creatinine clearance ability increases from 0.09 mg/dl to 0.25 mg/dL. Urea clearance ability increases from 2.3 mg/dL to 3.07 mg/dL. The SEM image showed that the modification makes the membranes more porous.