Agung Abadi Kiswandono
Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Lampung, Jl. Prof. Dr. Ir. Sumantri Brojonegoro, Gedong Meneng, Kec. Rajabasa, Kota Bandar Lampung, Lampung 35141|Universitas Lampung|Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Investigating Phenol Transport Using Copoly(Eugenol-DVB) 8% as a Carrier with the Supported Liquid Membrane Method Agung Abadi Kiswandono; Windi Antika; Anisa Rahmawati; Rinawati Rinawati
Jurnal Kimia Sains dan Aplikasi Vol 26, No 10 (2023): Volume 26 Issue 10 Year 2023
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jksa.26.10.372-380

Abstract

The presence of phenol in water has adverse effects on human health and the environment, as it is a toxic contaminant commonly found in industrial waste. To address this issue, studies were conducted to investigate the transport of phenol using copoly(eugenol-divinyl benzene) (Co-EDVB) 8% as a carrier on polytetrafluoroethylene (PTFE) membranes, employing the Supported Liquid Membrane (SLM) method. Various parameters affecting phenol transport were examined, including the pH of the source phase, concentration in the receiver phase, immersion time, carrier concentration, and transport duration. Co-EDVB 8% was synthesized through copolymerizing eugenol and 8% divinyl benzene, facilitated by the BF3O(C2H5) catalyst. The synthesized polymer was characterized using FTIR. The phenol concentration post-transportation was determined spectrophotometrically using a 4-aminoantipyrine reagent, with absorbance measured at λ = 456 nm. The findings indicate that under optimal conditions—source phase pH of 5.5, NaOH concentration of 0.1 M, immersion time of 1 hour, carrier concentration of 0.01 M, and a transportation time of 24 hours—the Co-EDVB carrier in the PTFE membrane efficiently transported phenol. Even after 24 hours of the phenol transport process, the percentage of membrane liquid loss (%ML Loss) did not significantly decrease, remaining at 8.35%. This was corroborated by Scanning Electron Microscope (SEM) results and FTIR characterization. In conclusion, the PTFE membrane incorporating 8% Co-EDVB as a carrier exhibits effective phenol transport, achieving a transportation efficiency of 92.10%.
In-Vitro Study of Polysulfone-polyethylene glycol/chitosan (PEG-PSf/CS) Membranes for Urea and Creatinine Permeation Retno Ariadi Lusiana; Nurwarrohman Andre Sasongko; Vivi Dia A. Sangkota; Nor Basid Adiwibawa Prasetya; Parsaoran Siahaan; Agung Abadi Kiswandono; Mohd Hafiz Dzarfan Othman
Jurnal Kimia Sains dan Aplikasi Vol 23, No 8 (2020): Volume 23 Issue 8 Year 2020
Publisher : Chemistry Department, Faculty of Sciences and Mathematics, Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (36.56 KB) | DOI: 10.14710/jksa.23.8.283-289

Abstract

High concentrations of creatinine and urea in the blood can be removed by dialysis using semipermeable membranes that are selective for certain species and hold other species through diffusion processes. This ability requires a membrane that has an active side, which functions as a targeted species identifier. The membrane must be biocompatible because the membrane will be in direct contact with the body’s biological systems. The membrane material that is made must be acceptable to the blood system so that there is no rejection from the body and have a large contact area to obtain an effective diffusion process. For this reason, a hollow fiber membrane (HFM) is needed. One of the synthetic polymers used as the base material for HFM is PSf. PSf has mechanical strength, heat resistance, and is easily formed into HFM. However, PSf has disadvantages such as lack of active side and less compatible with blood due to its hydrophobic properties. Modification using PEG and chitosan will reduce the hydrophobicity of the PSf. Membrane results were analyzed the physical, chemical, and transportability for urea and creatinine. The results of functional group characterization by FTIR show that the modification reaction was successfully carried out on polysulfone to produce PEG-PSf/CS. The modification succeeded in making the PSf membrane more hydrophilic, as evidenced by a decrease in the contact angle from 69.4° (PSf) to 53° (PEG-PSf/CS). Water uptake capability increases to 609%, and membrane porosity increases porosity increased from 72 to 83%. The water flux is also increased. Creatinine clearance ability increases from 0.09 mg/dl to 0.25 mg/dL. Urea clearance ability increases from 2.3 mg/dL to 3.07 mg/dL. The SEM image showed that the modification makes the membranes more porous.