Claim Missing Document
Check
Articles

Found 11 Documents
Search

Analisis Peningkatan Performa Akses Website dengan Web Server Stress Tool Hendra Kurniawan; Eka Puji Widiyanto
JATISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol 2 No 2 (2016): JATISI MARET 2016
Publisher : Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM) STMIK Global Informatika MDP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (406.74 KB) | DOI: 10.35957/jatisi.v2i2.50

Abstract

Website access speed is marked with a fast loading time duration and reliability of the web server has a significant effect in providing comfort for the user when accessing the website. The stability is very dependent on the access to the website owned by the web server performance as well as the large size of the page. The scope of the issues examined included the testing and selection of web servers that are reliable and the implementation of the action optimization of web templates include Image Compression, Browser Cache, Minify CSS, HTML and Javascript files, Anti Render-Blocking Javascript placement CSS stylesheets, script placement Javascript. Stability testing of web servers and website access speed is measured via Web Server Stress Tool application version 8 with the type of test that has the RAMP test and parameter included Users Simultaneous, Click, Error, Error (%) Avg. Click Times (ms), and Time Spent (ms). Research methodology oriented to the analysis of the reliability of the web server and web access speed comparison test between the data pre-test and post-test web test results of the implementation of the optimization of the web template. Based on the results of the discussion is concluded that the obtained web server owned dracoola.com have the best quality and performance so it supports the stability of the web. In addition, it can also be concluded that there is increased access speed or loading time amounted to 43.19% (avg. Click times) and 32.80% (time spent) after implementing optimization measures on web templates.
Analisis Performa AES Untuk Sekuriti Jaringan Scada Berbasis ATMega16 Eka Puji Widiyanto
JATISI (Jurnal Teknik Informatika dan Sistem Informasi) Vol 3 No 2 (2017): JATISI MARET 2017
Publisher : Lembaga Penelitian dan Pengabdian pada Masyarakat (LPPM) STMIK Global Informatika MDP

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (258.141 KB) | DOI: 10.35957/jatisi.v3i2.74

Abstract

SCADA as the backbone for modern sontrol system has been unseparated part of human daily life, from industrial system, powerline, to military system with its global and vast scope. SCADA by nature is not safe, and because of that reason there is a big security hole in every SCADA system that threatens its functionality. To overcome this, security concept must be applied to existing SCADA system in the form on data encryption. AES 128 bit is used as the encryption method on an 8 bit microprocessor AVR ATMEGA16 clocked at 11.0592MHz. Based s to encrypt 16 bytes block of data and requiremon this chip, AES executed with total time of 40 s for decryption. With this performance on an 8 bit chip architecture, using AES asm60 encryption for any field object in SCADA system is very advisable to achieve higher security level.
Identifikasi Ngengat menggunakan Metode Convolutional Neural Network Ricky Ricky; Ery Hartati; Eka Puji Widiyanto
MDP Student Conference Vol 2 No 1 (2023): The 2nd MDP Student Conference 2023
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (944.351 KB) | DOI: 10.35957/mdp-sc.v2i1.4292

Abstract

Ngengat merupakan salah satu jenis serangga dari Ordo Lepidoptera yang populasinya sebesar 90% dari Ordo Lepidoptera di dunia. Ngengat berfungsi sebagai indikator kondisi lingkungan yang terkait dengan fenomena degradasi lingkungan, ngengat juga dapat digunakan sebagai objek untuk penelitian konservasi keanekaragaman hayati, evolusi, etologi dan genetika karena sifat taksonominya yang mapan dan mudah dikenali. Penelitian ini bertujuan untuk mengidentifikasi spesies ngengat menggunakan metode Convolutional Neural Network dengan arsitektur VGG-16 dan optimizer Adam. Dataset yang digunakan terbagi atas 7183 data train, 250 data test, dan 250 data valid. Kemudian dilakukan augmentasi pada objek dataset yang dibagi menjadi 400.400 data train, 85.800 data test, dan 85.800 data valid. Pada penelitian ini metode CNN dengan arsitektur VGG-16 dan Optimizer Adam serta dataset yang telah diaugmentasi berhasil meingidentifikasi ngengat dan menghasilkan tingkat akurasi sebesar 95%.
Klasifikasi Kepemilikan Tanda Tangan Menggunakan Convolutional Neural Network dengan Arsitektur AlexNet Khrisnaldi Wijaya; Eka Puji Widiyanto
MDP Student Conference Vol 2 No 1 (2023): The 2nd MDP Student Conference 2023
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2942.393 KB) | DOI: 10.35957/mdp-sc.v2i1.4328

Abstract

Pengenalan tanda tangan menjadi bukti penting untuk memvalidasi suatu berkas yang menandakan bahwa berkas tersebut asli sehingga dapat dikatakan bahwa tanda tangan setiap orang berbeda dan unik. Oleh karena itu, tanda tangan tidak boleh disalahgunakan karena akan berakibat fatal. Pengenalan kepemilikan tanda tangan diperlukan untuk mengetahui siapa pemilik tanda tangan tersebut. Penelitian ini bertujuan untuk mengenali pola tanda tangan seseorang menggunakan Convolutional Neural Network dengan arsitektur AlexNet. Dataset yang digunakan pada penelitian ini sebanyak 300 citra yang dibagi menjadi 240 data latih dan 60 data uji. Penelitian ini menggunakan 3 optimizer yaitu optimizer Adam, optimizer SGD, dan optimizer RMSprop. Penelitian ini menggunakan batchsize sebesar 2, learning rate sebesar 0,01 untuk optimizer SGD dan learning rate sebesar 0,001 untuk optimizer adam dan RMSprop. Setiap optimizer yang diuji menghasilkan nilai precision, recall, dan accuracy yang berbeda - beda. Hasil pengujian tertinggi yang dilakukan pada dataset internal didapatkan oleh optimizer SGD dengan tingkat akurasi sebesar 83,3%.
Klasifikasi Monkeypox Menggunakan Ekstraksi Fitur GLCM dan Algoritma Random Forest William Wijaya; Muhammad Rizky Pribadi; Eka Puji Widiyanto
MDP Student Conference Vol 2 No 1 (2023): The 2nd MDP Student Conference 2023
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (650.677 KB) | DOI: 10.35957/mdp-sc.v2i1.4435

Abstract

Monkeypox adalah penyakit yang pertama kali ditemukan pada tahun 1958 di Denmark ketika ada dua kasus seperti cacar pada koloni kera yang dipelihara untuk penelitian, sehingga cacar ini dinamakan ‘Monkeypox’. GLCM adalah suatu matriks yang merepresentasikan frekuensi munculnya pasangan dua piksel dengan intensitas keabuan, jarak dan sudut dan Random Forest adalah salah satu metode klasifikasi yang merupakan kombinasi dari setiap pohon yang baik kemudian dikombinasikan ke dalam satu model. Penelitian ini menggunakan public dataset monkeypox dan non-monkeypox dan memiliki gambar berjumlah 3.192 dibagi menjadi data uji dan data latih dengan rasio 60:40, 70:30, 80:20, dan 90:10. Hasil dari fitur tekstur GLCM dilakukan pengujian dengan metode Random Forest menggunakan parameter n_estimator = 100, 500, dan 1000. Dari empat pengujian yang sudah dilakukan, disimpulkan bahwa n_estimator terbaik adalah 100 dengan proporsi rasio dataset 90:10, yang menghasilkan nilai accuracy sebesar 77%, precision 77% ,recall 77%, dan f1-score 76,5%.
Klasifikasi Jenis Terung Menggunakan Metode SVM dengan Fitur HSV dan HOG alek bayu kurniawan; Eka Puji Widiyanto
MDP Student Conference Vol 2 No 1 (2023): The 2nd MDP Student Conference 2023
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (390.244 KB) | DOI: 10.35957/mdp-sc.v2i1.4451

Abstract

Terung memiliki bentuk dan warna buah yang cukup beragam. Dengan banyaknya jenis terung, masyarakat Indonesia masih sulit membedakan jenis terung yang ada. Sehingga dibutuhkan sebuah sistem yang dapat mengklasifikasikan jenis-jenis terung berdasarkan Fitur HSV dan HOG dengan menggunakan metode Support Vector Machine. Berdasarkan hasil pengujian dengan fitur HSV dan HOG menggunakan Support Vector Machine mendapatkan hasil Accuracy tertinggi pada jenis Terung Hijau dan Terung Ungu senilai 96.75%. Dengan hasil akurasi yang didapat dari setiap jenis Terung, maka metode SVM dengan fitur HSV dan HOG dapat mengklasifikasi jenis Terung dengan sangat baik.
Implementasi YOLOv8 Dalam Penghitung Masuk dan Keluar Manusia Pada Gedung Fahrezi, Muhammad Azril; Widiyanto, Eka Puji
JATISI Vol 11 No 3 (2024): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v11i3.9050

Abstract

The rapid development of technology has made various human activities more efficient and easier to carry out. One of the innovations commonly used in communication technology is surveillance cameras. Surveillance cameras can be utilized as security monitoring tools, such as counting the number of people entering and exiting a building. Counting the number of people entering and exiting is a method often used as a security measure or for evaluating business premises. However, many buildings or businesses still manually count the number of people entering and exiting, which can lead to errors in the counting process. The aim of this research is to develop an application that can automatically count the number of people entering and exiting a building using a camera. The method used is You Only Look Once Version 8 (YOLOv8). YOLOv8 is a fast and accurate object detection model. The implementation results showed a precision of 79.6%, a recall of 61.7%, and a mean average precision (mAP) of 72.3%.
Implementasi YOLOv8 Dalam Deteksi Angka Meteran Air PDAM Sa'adat, Fadhil; Widiyanto, Eka Puji
JATISI Vol 11 No 3 (2024): JATISI (Jurnal Teknik Informatika dan Sistem Informasi)
Publisher : Universitas Multi Data Palembang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35957/jatisi.v11i3.9081

Abstract

The Regional Water Company (PDAM) is responsible for providing clean water and recording water consumption through meters. The current manual recording system often leads to issues such as recording errors and customer dissatisfaction. To address these problems, this study developed a system for detecting and recognizing PDAM water meter numbers using the You Only Look Once Version 8 (YOLOv8) method. YOLOv8 is an object detection method based on convolutional neural networks, capable of identifying objects in real-time with high accuracy. The aim of this study is to create a system that can automatically recognize numbers on water meters, improve recording accuracy, and reduce human errors made by meter reading officers. The research methods used include image data collection, YOLOv8 model training, and system testing. The test results show that the developed model achieved a precision of 98.1%, a recall of 97.7%, with a mean Average Precision (mAP) of 99.2%.
Sistem Cerdas Pengkategorian Surat Undangan Elektronik Tender Pekerjaan Dengan AutoML Kelly, Angel; Irsyad, Hafiz; Widiyanto, Eka Puji
Bulletin of Information Technology (BIT) Vol 5 No 4: Desember 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bit.v5i4.1501

Abstract

Abstrak−Tender merupakan tawaran untuk mengajukan harga, memborong pekerjaan, atau menyediakan barang. Pengelompokan surat undangan elektronik tender pekerjaan merupakan proses penting dalam menentukan apakah tender tersebut termasuk kategori pekerjaan dalam suatu perusahaan. Dataset yang digunakan memiliki jumlah sebanyak 650 judul pekerjaan yang dibagi dengan rasio 80:20, data training sebesar 80% dan data testing sebesar 20%. Pengembangan perangkat lunka ini dilakukan untuk mengelompokan kategori surat undangan elektronik tender menggunakan algoritma AutoML AutoGluon. Hasil dari pengujian yang dilakukan menunjukkan akurasi terbaik yang dihasilkan pada pengujian skenario ketiga (presets High) dengan akurasi sebesar 81.53%, sedangkan skenario pertama (presets Medium) memberikan akurasi terendah sebesar 77.69%. Kata Kunci: AutoML, AutoGluon, Tender, Surat Undangan Elektronik
ANALISIS KINERJA MODEL YOLOv8 UNTUK MONITORING KEPATUHAN PENGGUNAAN SEPATU SAFETY PADA PETUGAS PEMADAM KEBAKARAN Stephen Setyawan; Eka Puji Widiyanto
Jurnal Informatika dan Teknik Elektro Terapan Vol. 13 No. 3S1 (2025)
Publisher : Universitas Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jitet.v13i3S1.8065

Abstract

Compliance with Personal Protective Equipment (PPE), such as safety shoes, is a crucial challenge in high-risk work environments, including for firefighters. Negligence in PPE usage is a leading cause of workplace accidents. This study aims to analyze the performance of the YOLOv8 object detection model in a real-time monitoring system designed to detect the use of safety shoes. The research method includes system design, image dataset collection, YOLOv8 model training, and performance evaluation using standard metrics. The performance analysis shows excellent model performance, achieving a precision of 97%, recall of 94.9%, and a mean Average Precision (mAP) of 97.5%. Furthermore, functional testing of the system resulted in a 90% user satisfaction rate. These results indicate that YOLOv8 is an effective and reliable method for automated monitoring and has great potential to minimize workplace accidents caused by negligence in PPE use.