Abd Rahman
Inorganic Chemistry, King Fahd University of Petroleum & Minerals, Academic Belt Road, Dhahran 31261, Saudi Arabia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

The Effect of Thermal Treatment on the Characteristics of Porous Ceramic-Based Natural Clay and Chitosan Biopolymer Precursors Suriati Eka Putri; Ahyar Ahmad; Indah Raya; Rachmat Triandi Tjahjanto; Rizal Irfandi; Harningsih Karim; Susilo Sudarman Desa; Abd Rahman
Indonesian Journal of Chemistry Vol 23, No 3 (2023)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.80375

Abstract

This study was conducted to determine the role of thermal treatment on the crystallinity and pore characteristics of porous ceramic, which was prepared from natural clay (NC) and chitosan (CS) biopolymer using the gel casting method. CS was used as an environmentally friendly pore-forming agent. The applied temperature treatment was based on thermal analysis (TGA/DTA) results and followed a sintering temperature of 900 to 1100 °C. The results showed that at sintering temperatures from 900 to 1000 °C, the crystallinities of the ceramic decrease (from 76.06 to 74.06%) and the crystallite size decreases (from 35.71 to 34.47 nm) while the lattice strain increases (calculated from the Full Width at Half Maximum (β) of the diffraction peak). The highest porosity of ceramic occurred at a sintering temperature of 1000 °C of 37.82 ± 0.19, but the formation of heterogeneous microstructure was observed. The resulting pore size for all temperature treatments was almost mesoporous (19.1 Å). Based on the results obtained, it is emphasized that the sintering temperature can be used to adjust the porosity and microstructure of porous ceramics.
Effect of Sintering Temperature on the Microstructure Behavior of Gelcasted Porous Ceramics Using Cassava Starch as Pore Template Suriati Eka Putri; Diana Eka Pratiwi; Rachmat Triandi Tjahjanto; Nita Magfirah Ilyas; Dahlang Tahir; Abd Rahman; Heryanto Heryanto
Indonesian Journal of Chemistry Vol 23, No 5 (2023)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.78875

Abstract

The gelcasting technique was employed to fabricate porous ceramics utilizing kaolinite clay as the base material with a combination of 20 wt.% cassava starch. The utilization of cassava starch as a pore-template material is a sustainable and eco-friendly approach. The dry mixture compacted pellets underwent calcination for 2 h at three distinct sintering temperatures, namely 900, 1000, and 1100 °C. The present study investigated the impact of sintering temperatures on various ceramic properties, including but not limited to porosity, hardness, crystallinity, lattice strain, and morphology. Furthermore, an increase in sintering temperature led to a reduction in crystallinity of the ceramic material from 81.71 to 78.06%, while the lattice strain increased, as determined by the full width at half maximum peak diffraction calculation. The study determined that the pore size remained microporous (21 Å) across all temperature treatments. Ultimately, a porous ceramic material was fabricated, exhibiting a porosity of 39.44% by volume and a desirable hardness of 94 HB. The optimal sintering temperature for this material was found to be 900 °C. The anticipated application of the porous ceramic, which has taken on a pellet shape, is as a catalyst support for wastewater filtration in the future.