Claim Missing Document
Check
Articles

Found 16 Documents
Search

Implementasi Sistem Peramalan Pengadaan Kebutuhan Bahan Baku Pangan Dengan Metode Weighted Moving Average Erlinda, Reza Ena; Yudatama, Uky; Arumi, Endah Ratna
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 9 No 2: April 2022
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2022924700

Abstract

Junkyard Auto Park Cafe merupakan salah satu usaha di bidang pariwisata dan kuliner, dalam proses produksi aneka makanan tersebut dibutuhkan bahan baku pangan. Sebulan sekali proses pembelanjaan bahan baku dilakukan dengan jumlah yang telah ditentukan, namun kelebihan dan kekurangan sering terjadi, hal ini dikarenakan penggunaan yang tidak dapat dipastikan. Penelitian ini bertujuan untuk memudahkan dan meminimalisir kesalahaan dalam melakukan proses pendataan serta mengetahui perkiraan kebutuhan bahan baku pangan dalam jangka waktu ke depan sebagai acuan dalam proses pengambilan keputusan manajerial. Dalam proses penelitian ini digunakan salah satu metode forecasting yaitu Weighted Moving Average (WMA) dikarenakan model ini memiliki sifat yang lebih responsive terhadap adanya perubahan data. Hasil dari rekap data laporan penggunaan bahan baku selanjutnya akan dilakukan proses perhitungan matematis untuk menghasilkan suatu nilai peramalan. Dari penelitian ini dilakukan tiga kali pengujian terhadap bobot yang berbeda, dari percobaan yang dilakukan terhadap masing-masing bobot yang diberikan diperoleh hasil akurasi terbaik pada bobot 0,7 0,2 0,3 dengan nilai MSE 0,0302. Hasil penelitian ini dapat membantu untuk memperkirakan jumlah kebutuhan bahan baku yang diperlukan sehingga mempermudah dalam menentukan pembelanjaanya. AbstractJunkyard Auto Park Cafe is one of the businesses in the tourism and culinary sector, in the production process of various foods, food raw materials are needed, the process of purchasing raw materials is carried out once a month with a predetermined amount so that there are often advantages and disadvantages due to erratic use. This study aims to facilitate and minimize mistakes in carrying out the data collection process and to find out the estimated needs for food raw materials in the future as a reference in the managerial decision-making process. Forecasting is a method as a tool in carrying out an efficient and effective planning. In this research process, one of the forecasting methods is used, namely Weighted Moving Average (WMA) because this model is more responsive to data changes. The results of the data recap of the report on the use of raw materials will then be carried out a mathematical calculation process to produce a forecasting value. From this research, three tests were carried out on different weights, from the experiments carried out on each given weight, the best accuracy results were obtained at a weight of 0.7 0.2 0.3 with an MSE value of 0.0302. The results of this study can help to estimate the amount of raw material needed to make it easier to determine the expenditure. 
Exploiting Web Scraping for Education News Analysis Using Depth-First Search Algorithm Arumi, Endah Ratna; Sukmasetya, Pristi
JOIN (Jurnal Online Informatika) Vol 5 No 1 (2020)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v5i1.548

Abstract

Online news is one source of data that is always up to date and provides information or factual data. The search engine is one of the features for users to be able to enter keywords based on the expected category quickly. The development of education in Indonesia makes it essential to discuss, in this study using unstructured data in online news with the keyword Education included as a parameter, and adding search methods in the field of Artificial Intelligence so that the data becomes more accurate. Data that used here was from online news, namely CNN Indonesia, Detikcom, and Liputan6. Using Python Programming with depth-first search method (DFS), when compared with the results data for relevant news. Web erosion using DFS will be very helpful in searching because this method can check the date data was sent and then track the destination URL. Of the three online media sites, Detikcom produces the highest monthly data yielding an average of 885 news about education. At the same time, Liputan6 has the least amount of data on average, 28 news per month, but the data obtained are very relevant compared to Detikcom and CNN Indonesia.
Implementasi Metode Dempster-Shafer Untuk Deteksi Kesehatan Mental Pada Mahasiswa Berbasis Web Jalaluddin, Alif; Arumi, Endah Ratna; Sasongko, Dimas; Pinilih, Sambodo Sriadi; Yudatama, Uky; Arif Yudianto, Muhammad Resa
Journal of Computer System and Informatics (JoSYC) Vol 5 No 2 (2024): February 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v5i2.4830

Abstract

Mental health is a person's soul condition to budaptasi in its environment to feel happy or get the comfort of life, so as not to experience mental disorders. Often mental health is ignored by most people because it is different from physical health that can be seen directly with the eyes and can be identified easily. Lack of awareness of mental health in the life of the people of Indonesia and the assumption that a person who goes to psychologists is a person inseasonable, often the individual who actually undergoes mental health problems reluctant to get help from experts or deny that he does not have mental health problems. Limitations of time and costs are also one of the constraints of a student reluctant to get help from experts like psychologists. Therefore, a web-based expert system is built with a dempster-shafer method to use as detection on the student and allows the user to know whether the user has a tendency of the problem on its mental health or not before the official consultation is required from the expert. Testing Accuracy Comparison System between the results of the system and experts by using 100 correspondents from students at Muhammadiyah Magelang University (UNIMMA) 89% know mental health and 65% have experienced mental disorders. The results of the SRQ29 data used and were spread among campus students, this study has used 20 sample data and produces 70% expert suit compliance. From the results of expert suitability obtained from the calculation of the system by selecting symptoms and automatically the system will calculate the accuracy of the existing Belief Valident in every symptom. Then the system will take decisions based on the results of the largest calculation value.
Implementasi User Centered Design untuk meningkatkan pengalaman pengguna Aplikasi PPDB Kabupaten Temanggung Prawesty, Esty; Hendradi, Purwono; Arumi, Endah Ratna
Smart Comp :Jurnalnya Orang Pintar Komputer Vol 13, No 1 (2024): Smart Comp: Jurnalnya Orang Pintar Komputer
Publisher : Politeknik Harapan Bersama

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30591/smartcomp.v13i1.6179

Abstract

Penerapan teknologi dalam Penerimaan Peserta Didik Baru (PPDB) secara online memberikan manfaat yang signifikan, namun masih terdapat tantangan seperti tampilan aplikasi yang kurang intuitif dan pengalaman pengguna yang kurang memuaskan. Oleh karena itu, penelitian ini menggunakan metode User Centered Design (UCD) untuk meningkatkan pengalaman pengguna. Melalui analisis kebutuhan dan riset pengguna, parameter utama yang memerlukan perbaikan diidentifikasi, termasuk daya tarik, kejelasan, efisiensi, dan stimulasi. Solusi desain produk dihasilkan melalui pembuatan wireframe definisi rendah dengan tampilan baru yang menarik, pemeriksaan status pendaftaran, dan fitur pendaftaran ulang. Evaluasi dengan menggunakan User Experience Questionnaire (UEQ) menunjukkan peningkatan yang signifikan pada keempat parameter evaluasi, terutama efisiensi. Desain prototipe menerima nilai "Sangat Baik", yang menunjukkan peningkatan positif dalam pengalaman pengguna. Kesimpulannya, perancangan ulang aplikasi PPDB dengan pendekatan UCD berhasil meningkatkan pengalaman pengguna secara keseluruhan, dan rekomendasi desain ini dapat menjadi pedoman pengembangan aplikasi PPDB di masa depan..
Sistem Klasifikasi Keanekaragaman Tanaman Pangan Menggunakan Transfer Learning Pendekatan CNN dan Model Arsitektur EfficientNetB7 Setyawan, Akhmad Fajar; Hasani, Rofi Abul; Arumi, Endah Ratna
Journal of Information System Research (JOSH) Vol 6 No 1 (2024): Oktober 2024
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josh.v6i1.5577

Abstract

Plant species identification is a crucial aspect in agriculture and forestry, significantly impacting food production, environmental conservation, and scientific research. The difficulty in identifying plant species can be caused by several factors, such as high morphological diversity, similarities between species, and changes in plant morphology due to different environmental conditions. This study uses a deep learning approach with the EfficientNetB7 architecture to solve the problem of plant identification. The dataset used consists of 30,000 images representing 30 plant species, each with 1,000 images. The model was trained using transfer learning techniques, tested on two scenarios classification with 4 plant classes and 30 plant classes. Results showed an accuracy of 97% with a loss of 0.24 for 4 classes, and an accuracy of 85% with a loss of 1.1 for 30 classes. The higher loss value in the scenario with 30 classes was due to the increased complexity and greater diversity of data. The evaluation results showed that the EfficientNetB7 was effective in classifying plant species with a high level of accuracy. It’s expected that model can be implemented to improve efficiency in plant maintenance and management. Convolutional Neural Network (CNN) architecture greatly influences the results of image classification. CNN is generally divided into two stages feature extraction using convolution layers and classification using artificial neural networks. The sixth CNN succeeded in achieving the highest accuracy in batik motifs, which was 87.83%. This model was good performance on precision and recall metrics.
Pemanfaatan E-Book Interaktif bagi Siswa SMK Muhammadiyah 2 Mertoyudan Kabupaten Magelang Arumi, Endah Ratna; Maimunah, Maimunah
E-Dimas: Jurnal Pengabdian kepada Masyarakat Vol 11, No 4 (2020): E-DIMAS
Publisher : Universitas PGRI Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26877/e-dimas.v11i4.3598

Abstract

Kegiatan pengabdian ini mempunyai tujuan jangka panjang untuk mewujudkan siswa SMK Muhammadiyah 2 Mertoyudan yang memiliki pengetahuan dan kreativitas pada bidang komputer khususnya untuk aplikasi pembuatan e-book sebagai sarana media pembelajaran. Tujuan jangka pendek dengan mengedukasi siswa dalam menggunakan tools pada aplikasi pembuatan e-book, sehingga diharapkan siswa dapat merancang dan mengembangkan keterampilan siswa. Kegiatan ini dilaksanakan dengan metode pendampingan secara komprehensif kepada siswa SMK Muhammadiyah 2 Mertoyudan melalui sosialisasi aplikasi pembuatan e-book yang interaktif, penggunaan aplikasi, pembuatan modul penggunaan aplikasi yang digunakan untuk panduan pengoperasian aplikasi tersebut, sehingga membantu siswa dalam praktik pembuatan desain dan siswa diharapkan dapat membuat e-book pada pelajaran tertentu. Hasil dari pengabdian ini dapat mengembangkan bakat kreativitas siswa melalui media pembelajaran e-book interaktif yang dapat meningkatkan keterampilan berpikir kritis siswa melalui konsep-konsep yang dijelaskan dengan menggunakan variasi konten. Pelatihan ini menghasilkan 15 e-book untuk 15 mata pelajaran siswa SMK, yang bisa dimanfaatkan siswa dan guru sebagai media belajar mengajar.