Claim Missing Document
Check
Articles

Found 6 Documents
Search

A COMPUTATION PERSPECTIVE FOR THE EIGENVALUES OF CIRCULANT MATRICES INVOLVING GEOMETRIC PROGRESSION SISWANDI SISWANDI; SUGI GURITMAN; NUR ALIATININGTYAS; TEDUH WULANDARI
Jurnal Matematika UNAND Vol 12, No 1 (2023)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.12.1.65-77.2023

Abstract

In this article, the eigenvalues and inverse of circulant matrices with entries in the first row having the form of a geometric sequence are formulated explicitly in a simple form in one theorem. The method for deriving the formulation of the determinant and inverse is simply using elementary row or column operations. For the eigenvalues, the known formulation of the previous results is simplified by considering the specialty of the sequence and using cyclic group properties of unit circles in the complex plane. Then, the algorithm of eigenvalues formulation is constructed, and it shows as a better computation method.
A FAST COMPUTATION FOR EIGENVALUES OF CIRCULANT MATRICES WITH ARITHMETIC SEQUENCE Sugi Guritman; Jaharuddin; Teduh Wulandari Mas'oed; Siswandi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 1 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : Dept. of Mathematics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.1.69-80

Abstract

In this article, we derive simple formulations of the eigenvalues, determinants, and also the inverse of circulant matrices whose entries in the first row form an arithmetic sequence. The formulation of the determinant and inverse is based on elementary row and column operations transforming the matrix to an equivalent diagonal matrix so that the formulation is obtained easily. Meanwhile, for the eigenvalues formulation, we simplify the known result of formulation for the general circulant matrices by exploiting the properties of the cyclic group induced by the set of all roots of as the set of points in the unit circle in the complex plane, and also by considering the specific property of arithmetic sequence. Then, we construct an algorithm for the eigenvalues formulation. This algorithm shows a better computation compared to the previously known result for the general case of circulant matrices.
DETERMINAN, INVERS, DAN NILAI EIGEN MATRIKS SKEW-CIRCULANT DENGAN ENTRI BARISAN GEOMETRI Mirza Farhan Azhari; Teduh Wulandari Mas'oed; Sugi Guritman; Jaharuddin; Siswandi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 2 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : Dept. of Mathematics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.2.129-140

Abstract

Matriks skew-circulant adalah matriks segi yang entri terakhir setiap baris berpindah ke posisi utama dan berganti tanda disertai pergeseran semua entri lainnya ke posisi berikutnya. Dalam artikel ini, entri dari matriks circulant berupa entri barisan bilangan geometri. Tujuannya adalah merumuskan suatu formulasi sederhana dari determinan, invers, dan nilai eigen dari suatu matriks skew circulant. Formulasi determinan ditentukan dengan menerapkan serangkaian operasi baris dasar dan kolom dasar sampai diperoleh matriks diagonal. Langkah untuk mencari invers dilakukan dengan mengadaptasi metode dalam mencari determinan dan ekuivalensi baris dan kolom pada matriks. Dalam mencari nilai eigen digunakan konsep akar kesatuan (roots of unity) dan subgrup siklik.
Explicit Determinant and Inverse Formulas of Skew Circulant Matrices with Alternating Fibonacci Numbers Handoyo, Sapto Mukti; Guritman, Sugi; Mas'oed, Teduh Wulandari; Jaharuddin, Jaharuddin
CAUCHY: Jurnal Matematika Murni dan Aplikasi Vol 10, No 2 (2025): CAUCHY: JURNAL MATEMATIKA MURNI DAN APLIKASI
Publisher : Mathematics Department, Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/cauchy.v10i2.32358

Abstract

Skew circulant matrices have various applications such as cryptography, signal processing, and many more. Their structure can potentially simplify their determinant and inverse computations. This study presents explicit formulas for the determinant and inverse of skew circulant matrices with entries from the alternating Fibonacci sequence. Elementary row and column operations are used to derive simple explicit formulas for the determinant and inverse. Computational tests using Wolfram Mathematica show that the algorithm built from these explicit formulas performs with much faster execution time than the built-in functions, especially for large matrix size. The proposed approach offers a practical method for the numerical computation of the determinant and inverse of these matrices
A FAST COMPUTATION FOR EIGENVALUES OF CIRCULANT MATRICES WITH ARITHMETIC SEQUENCE Guritman, Sugi; Jaharuddin; Mas'oed, Teduh Wulandari; Siswandi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 1 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.1.69-80

Abstract

In this article, we derive simple formulations of the eigenvalues, determinants, and also the inverse of circulant matrices whose entries in the first row form an arithmetic sequence. The formulation of the determinant and inverse is based on elementary row and column operations transforming the matrix to an equivalent diagonal matrix so that the formulation is obtained easily. Meanwhile, for the eigenvalues formulation, we simplify the known result of formulation for the general circulant matrices by exploiting the properties of the cyclic group induced by the set of all roots of as the set of points in the unit circle in the complex plane, and also by considering the specific property of arithmetic sequence. Then, we construct an algorithm for the eigenvalues formulation. This algorithm shows a better computation compared to the previously known result for the general case of circulant matrices.
DETERMINAN, INVERS, DAN NILAI EIGEN MATRIKS SKEW-CIRCULANT DENGAN ENTRI BARISAN GEOMETRI Azhari, Mirza Farhan; Wulandari Mas'oed, Teduh; Guritman, Sugi; Jaharuddin; Siswandi
MILANG Journal of Mathematics and Its Applications Vol. 19 No. 2 (2023): MILANG Journal of Mathematics and Its Applications
Publisher : School of Data Science, Mathematics and Informatics, IPB University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29244/milang.19.2.129-140

Abstract

Matriks skew-circulant adalah matriks segi yang entri terakhir setiap baris berpindah ke posisi utama dan berganti tanda disertai pergeseran semua entri lainnya ke posisi berikutnya. Dalam artikel ini, entri dari matriks circulant berupa entri barisan bilangan geometri. Tujuannya adalah merumuskan suatu formulasi sederhana dari determinan, invers, dan nilai eigen dari suatu matriks skew circulant. Formulasi determinan ditentukan dengan menerapkan serangkaian operasi baris dasar dan kolom dasar sampai diperoleh matriks diagonal. Langkah untuk mencari invers dilakukan dengan mengadaptasi metode dalam mencari determinan dan ekuivalensi baris dan kolom pada matriks. Dalam mencari nilai eigen digunakan konsep akar kesatuan (roots of unity) dan subgrup siklik.