Claim Missing Document
Check
Articles

Found 4 Documents
Search

The Influence of Catalyst Loading on Electrocatalytic Activity and Hydrogen Production in PEM Water Electrolysis Rohendi, Dedi; Amelia, Icha; Sya'baniah, Nyimas Febrika; Yulianti, Dwi Hawa; Syarif, Nirwan; Rachmat, Addy; Fatmawati; Majlan, Edy Herianto
Science and Technology Indonesia Vol. 9 No. 3 (2024): July
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2024.9.3.556-564

Abstract

The climate change caused by the widespread and continuous use of fossil fuels is a problem that needs to be addressed urgently. One of the solutions offered is through an energy transition towards the use of new or renewable and low-carbon fuels. Hydrogen gas as a carrier of energy is an alternative solution that has attracted the attention of researchers, due to its high combustion energy and environmental friendliness. The production of hydrogen gas using the Proton Exchange Membrane Water Electrolysis (PEMWE) method is considered effective for large-scale production. This study investigates the impact of catalyst loading and various current densities on hydrogen production in the PEM water electrolysis process, utilizing the Cu2O/C catalyst. This study investigates the impact of catalyst loading and different current densities on hydrogen production in the PEM water electrolysis process, utilizing the Cu2O/C catalyst. The electrode catalytic properties were evaluated using the Cyclic Voltammetry (CV) method to determine the Electrochemical Surface Area (ECSA) and the Electrochemical Impedance Spectroscopy (EIS) method to determine the electrical conductivity. The ECSA and EIS measurements demonstrated that the best results were obtained at a higher catalyst loading of 2 mg/cm2 with an ECSA value of 0.21 m2/g and electrical conductivity of 3.04 × 10−6 S/cm. The production of hydrogen results showed that the highest hydrogen production rate was 3.75 mL/s with a catalyst loading of 2.5 mg/cm2, indicating that increasing the load could lead to a higher rate of hydrogen gas production, but this is highly dependent on the surface area utilized. Additionally, at higher current densities, the cell resistance in the electrolysis process may decrease, leading to reduced electrode efficiency for hydrogen production. Thus, the use of high currents may not always be advantageous in hydrogen production using the PEM water electrolysis method.
A review analysis of corrosion rate on stainless steel pipe in sea water media Alfattah, Muhammad; Arwati, I Gusti Ayu; Majlan, Edy Herianto
SINERGI Vol 28, No 3 (2024)
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/sinergi.2024.3.013

Abstract

Regarding providing energy, few sectors are as massive as the oil and gas business. One of the most crucial parts of oil and gas production is the distribution pipes or pipelines that transport the production fluids, which include oil and gas, from one distribution point to another. The corrosion of A316 material, which can lead to holes or pitting, and the damage it causes in most industrial operations, particularly in the oil and gas industry, has resulted in substantial losses at high prices over an extended period of time. In the study, we will quickly examine what corrosion is, the different kinds of corrosion, inhibitors, and how to assess the corrosion rate of A316 stainless steel in salt water. Analysis of the electrochemical corrosion rate of Inconel 600 nickel alloy and stainless steel 316L subjected to varying amounts of saltwater (freshwater, seawater, mixed water). Because chlorine speeds up corrosion, alloys like Inconel 600 and 316L undergo pitting corrosion. The molybdenum component gives 316 stainless steel its superior corrosion resistance. That's why it works well for gas and oil pipelines that go through saltwater. Nevertheless, materials exposed to maritime environments must have cathodic protection or coating to prolong their life and stop the pipe from continuously corroding.
Investigation of Mixed MeOH:EtOH Ratio and Air Supply on MEA Performance in Direct Alcohol Fuel Cell (DAFC) Yulianti, Dwi Hawa; Rohendi, Dedi; Majlan, Edy Herianto; Rachmat, Addy; Sya’baniah, Nyimas Febrika
Science and Technology Indonesia Vol. 10 No. 4 (2025): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2025.10.4.1012-1019

Abstract

Methanol (MeOH) and ethanol (EtOH) are commonly used fuels in Direct Alcohol Fuel Cells (DAFC). The advantages of these two fuels are influenced by electrochemical reactions centered around the Membrane Electrode Assembly (MEA). In this study, Pt/C catalyst was used on the cathode and Pt-Ru/C on the anode, with catalyst loadings of 2, 4, 6, 8, and 10 mg/cm2. The anode and cathode were characterized using Cyclic Voltammetry (CV), while the conductivity properties were evaluated through Electrochemical Impedance Spectroscopy (EIS). The Open Circuit Voltage (OCV) of the MEA in a single DAFC cell reached 0.65 V, with the highest value observed at a MeOH:EtOH volume ratio of 70:30 at concentrations of 3 M for MeOH and 2 M for EtOH. In addition to oxidation at the anode, oxygen reduction plays a significant role in the MEA performance on the cathode side. The oxygen supply to the cathode increased the power density by 52.17% at the optimal blower voltage of 5 V.
Natural Inhibitors for Corrosion Protection of 6061 Aluminum Alloy: A Review Witanta, Maulana; Arwati, I Gusti Ayu; Majlan, Edy Herianto
International Journal of Innovation in Mechanical Engineering and Advanced Materials Vol 7, No 3 (2025): Article in Press
Publisher : Universitas Mercu Buana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22441/ijimeam.v7i3.34713

Abstract

6061 aluminum alloys are widely used in automotive, marine, and aerospace industries, yet their high susceptibility to corrosion in acidic and chloride environments remains a challenge. Bio-based inhibitors from natural sources have emerged as sustainable alternatives to toxic synthetic chemicals. This review synthesizes findings from published studies on AA6061 alloys and composites, integrating evidence from Potentiodynamic Polarization (PDP), Electrochemical Impedance Spectroscopy (EIS), and Scanning Electron Microscopy (SEM). Cross-study evaluations show that inhibition efficiency depends on inhibitor type and mechanism. Reports indicate that Boswellia serrata provides only moderate protection (~70%) due to weak physiosorbed films that are unstable under flow, whereas Alocasia odora achieves higher efficiency (~94% in HCl) through chemisorption with cathodic inhibition. Aerva lanata demonstrates ~88% efficiency in chloride-based fiber-metal laminates via polyphenolic adsorption, while glutathione provides ~80% protection at 0.75 mM through multisite coordination. Pectin consistently achieves the highest efficiency (~95% in mild acidic media) by forming compact polymeric films that increase charge-transfer resistance and reduce double-layer capacitance. This synthesis indicates that chemisorption-based inhibitors (e.g., pectin, Alocasia) generally outperform physisorption-based systems (e.g., Boswellia) because they form stronger and more stable films. Reported studies highlight both advantages and limitations: natural inhibitors are effective and eco-friendly, but most evaluations remain short-term and laboratory-based. Key gaps include durability testing, advanced characterization (XPS, ToF-SIMS, Raman, AFM), galvanic effects in composites, and poor hydrodynamic stability of physisorption systems. Future work should explore hybrid strategies, synergistic multi-inhibitor approaches, and validation under real-sea conditions to enable scalable and industrially viable corrosion protection.