Claim Missing Document
Check
Articles

Found 3 Documents
Search

GeoGebra: Transformasi Teknologi yang Menyulap Pembelajaran Matematika Menjadi Lebih Menyenangkan Gusteti, Meria; Rahmalina, Widdya; Azmi, Khairul; Wulandari, Suci; Mulyati, Asrina; Hayati, Rahmatul; Wahyuni, Zelfi; AlFath, Muhammad Ro’id; Azizah, Nur
Jurnal Pengabdian kepada Masyarakat Nusantara Vol. 4 No. 4 (2023): Jurnal Pengabdian kepada Masyarakat Nusantara (JPkMN)
Publisher : Lembaga Dongan Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Mathematics learning is often perceived as monotonous and challenging to comprehend. This community service aims to introduce GeoGebra as a technological transformation that can make the mathematics learning process more engaging. Through a questionnaire approach filled out by students, it was found that the majority of participants felt more interested and motivated to learn mathematics with GeoGebra. They acknowledged gaining a deeper understanding of mathematical concepts and felt more confident in solving problems. Moreover, GeoGebra offers a new perspective on mathematics and encourages independent learning. In conclusion, GeoGebra holds significant potential in altering students' perceptions of mathematics, making it appear more enjoyable and understandable
Comparison Analysis of K-Nearest Neighbor and Naïve Bayes in Determining Talent of Adolescence Jusman, Yessi; Rahmalina, Widdya; Zarman, Juni
International Journal of Artificial Intelligence Research Vol 4, No 1 (2020): June
Publisher : Universitas Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (303.209 KB) | DOI: 10.29099/ijair.v4i1.118

Abstract

Adolescence always searches for the identity to shape the personality character. This paper aims to use the artificial intelligent analysis to determine the talent of the adolescence. This study uses a sample of children aged 10-18 years with testing data consisting of 100 respondents. The algorithm used for analysis is the K-Nearest Neigbor and Naive Bayes algorithm. The analysis results are performance of accuracy results of both algorithms of classification. In knowing the accurate algorithm in determining children's interests and talents, it can be seen from the accuracy of the data with the confusion matrix using the RapidMiner software for training data, testing data, and combined training and testing data. This study concludes that the K-Nearest Neighbor algorithm is better than Naive Bayes in terms of classification accuracy.
Optimisasi Model Regresi Linier Menggunakan Pendekatan Teori Rough Set Lovia, Lita; Yusnita, Yessy; Rahmi, Izzati; Rahmalina, Widdya
Lattice Journal : Journal of Mathematics Education and Applied Vol. 5 No. 2 (2025): Desember 2025
Publisher : Universitas Islam Negeri Sjech M. Djamil Djambek Bukittinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30983/lattice.v5i2.10376

Abstract

Linear regression is widely used to model student performance data; however, its effectiveness can decrease when applied to datasets containing inconsistent samples, which affects the clarity and stability of the model. This study explores the use of Rough Set Theory (RST) as a data reduction approach to improve the quality of linear regression modeling. RST is applied in the pre-modeling stage to identify and reduce inconsistent samples through two schemes: majority-keep reduction and strict reduction. Linear regression models are then built using the reduced datasets and compared with the initial model based on the coefficient of determination (R²) and classical regression assumption tests. The results show an increase in R² from 0.624 in the initial model to 0.741 with RST majority-keep and to 0.862 with RST strict reduction, indicating improved model fit after data reduction, and the classical regression assumptions are satisfied. These findings suggest that integrating RST improves the diagnostic quality and stability of linear regression, with majority-keep reduction providing an optimal balance between enhancing model and maintaining a representative sample size.   Regresi linier banyak digunakan untuk memodelkan data student performance. Namun, efektivitasnya dapat menurun ketika diterapkan pada data yang mengandung sampel inkonsisten sehingga memengaruhi kejelasan dan kestabilan model. Penelitian ini mengkaji penggunaan Rough Set Theory (RST) sebagai pendekatan reduksi data untuk meningkatkan kualitas pemodelan regresi linier pada data student performance. RST diterapkan pada tahap pra-pemodelan untuk mengidentifikasi dan mereduksi sampel yang tidak konsisten melalui dua skema reduksi, yaitu majority-keep reduction dan strict reduction. Model regresi linier kemudian dibangun menggunakan dataset hasil reduksi dan dibandingkan dengan model awal berdasarkan nilai koefisien determinasi (R²) dan hasil pengujian asumsi klasik regresi. Hasil penelitian menunjukkan bahwa nilai R² meningkat dari 0,624 pada model awal menjadi 0,741 pada model dengan RST majority-keep dan 0,862 pada model dengan RST strict reduction, yang menunjukkan peningkatan kecocokan model pada data yang dianalisis setelah dilakukan reduksi data dan uji asumsi klasik terpenuhi. Analisis ini mengindikasikan bahwa integrasi RST berkontribusi pada peningkatan kualitas diagnostik dan stabilitas model regresi linier melalui reduksi data. Di antara kedua skema reduksi, RST majority-keep memberikan keseimbangan yang lebih baik antara perbaikan model dan mempertahankan ukuran sampel yang representatif.