M Rokhis Khomarudin, M Rokhis
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

KAPASITAS INDEKS LAHAN TERBAKAR NORMALIZED BURN RATIO (NBR) DAN NORMALIZED DIFFERENCE VEGETATION INDEX (NDVI) DALAM MENGIDENTIFIKASI BEKAS LAHAN TERBAKAR BERDASARKAN DATA SPOT-4 Parwati, Parwati; Zubaidah, Any; Vetrita, Yenni; Yulianto, Fajar; DS, Kusumaning Ayu; Khomarudin, M Rokhis
GEOMATIKA Vol 18, No 1 (2012)
Publisher : Badan Informasi Geospasial in Partnership with MAPIN

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1996.976 KB) | DOI: 10.24895/JIG.2012.18-1.193

Abstract

Pada penelitian ini, kapasitas indeks Difference Normalyzed Burn Ratio (dNBR) dan indeks Difference Normalized Vegetation Index (dNDVI)  sebagai indeks lahan terbakar telah dianalisis untuk mengidentifikasi lahan bekas terbakar di wilayah Provinsi Riau berdasarkan data SPOT-4. Baik dNBR maupun dNDVI merupakan selisih antara indeks NBR atau NDVI sebelum terjadi kebakaran (pre-fire) dengan sesudah terjadi kebakaran (post-fire). Data time-series SPOT-4 yang digunakan adalah periode Juli 2009, Oktober 2010, Maret 2011, Juni 2011 dan Juli 2011. Hasil analisis menunjukkan bahwa nilai ekstraksi NDVI atau NBR pada kondisi pre-fire mempunyai nilai yang lebih tinggi dibandingkan dengan lahan pada kondisi post-fire. Umumnya hal tersebut menunjukkan adanya perubahan dari tingkat kehijauan vegetasi yang tinggi menjadi rendah. Berdasarkan hasil verifikasi di lapangan (Agustus 2011), ternyata pada lahan bekas terbakar indeks dNBR (0.42) menunjukkan nilai yang lebih tinggi dibandingkan dengan dNDVI (0.19). Sementara di lokasi pembukaan lahan/hutan tanpa membakar, indeks dNDVI (0.53) lebih tinggi dibandingkan dNBR (0.05). Hal tersebut membuktikan bahwa indeks dNBR sangat sensitif dalam mengidentifikasi lahan bekas terbakar yang menghandalkan spektrum radiasi Shortwave Infrared (SWIR) yang peka terhadap rendahnya kadar air di lahan bekas terbakar. Sementara indeks dNDVI lebih cocok digunakan untuk mendeteksi perubahan lahan dari vegetasi ke non vegetasi tanpa membakar.Kata Kunci : SPOT-4, lahan bekas terbakar, dNBR, dNDVI, Riau ABSTRACTIn this study, Difference Normalyzed Burn Ratio (dNBR) and Difference Normalized Vegetation Index (dNDVI) derived from SPOT-4 images were analyzed for identifying burn scar in Riau Province.The dNBR and dNDVI are the differences between NBR or NDVI in pre-fire condition and in post-fire condition. The time-series SPOT-4 images used in this study  have accusition month onJuly2009, October 2010, March 2011, June 2011, and July 2011. Results show that both NDVI and NBR have higher values in pre-fire rather than in post-fire condition. Generally, it shows the change in green vegetation level from high in vegetation cover to lower level in burnt area. However, by referring to field survey data (August 2011), the dNBR (0.42) shows higher value than the dNDVI (0.19) in burnt area. The indices were also applied in opened land/forest without burning activity which showed higher dNDVI (0.53) values rather than dNBR (0.05). Therefore, it has been proved that the dNBR index is more suitable to identify burnt area which has Shortwave Infrared (SWIR) spectrum that is more sensitive to moisture content in burnt area. Meanwhile the dNDVI could be used to identify forest changes to non forest cover without burning activitiy.Key Words : SPOT-4, burn scar, dNBR, dNDVI, Riau
New Approach to Mapping Regional Vulnerability in Controlling Tuberculosis Disease in Indonesia Herawati, Maria Holly; Hermawan, Asep; Dasuki, Dasuki; Supratikta, Hadi; Asyary, Al; Khomarudin, M Rokhis; Priyatna, Muhammad; Raflizar, Raflizar; Kristina, Kristina; Pracoyo, Noer Endah; Bisara, Dina; Purnami, Cahya Tri; Suteja, Mentari Nur Farida; Bachtiar, Yusrial; Sukoco, Noor Edi Widya; Lasut, Doni
Kesmas Vol. 19, No. 5
Publisher : UI Scholars Hub

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Tuberculosis (TB) in Indonesia is still a health problem. The TB prevalence in Indonesia ranks second in the world after India in 2023. Regional factors, inadequate healthcare facilities, and limited resources (financial, human, and infrastructure) are challenges requiring innovation to help the government control TB. TB eradication efforts need to be made with a comprehensive and effective approach. One method used is to look at the vast territory of Indonesia, therefore, mapping the TB disease vulnerability is a highly recommended method. The use of a Geographic Information System is expected to help map the TB vulnerability areas in Indonesia. Given the existence of several epidemiological, socio-geographic, and environmental factors influencing TB, the question arises of how to map TB vulnerability areas in Indonesia. This study used a cross-sectional design, secondary data was collected from several sources, and a vulnerability analysis was performed by considering several socio-environmental epidemiological variables. Furthermore, after the analysis, the TB area vulnerability category would be obtained along with a map of TB vulnerability areas in Indonesia according to regional and district analysis units. This study produces a TB susceptibility index and map in Indonesia for the regions of Sumatra, Java-Bali, and other regions.