Penelitian ini bertujuan untuk mengklasifikasikan citra mutiara Lombok berdasarkan bentuk, ukuran, dan kecacatan menggunakan metode pengolahan citra dan kecerdasan buatan. Proses segmentasi citra dilakukan menggunakan metode thresholding untuk memisahkan objek mutiara dari latar belakang, kemudian dilanjutkan dengan deteksi tepi menggunakan metode Canny guna mempermudah ekstraksi fitur. Fitur morfologis seperti area, perimeter, roundness, diameter, serta cacat bentuk dan warna diekstraksi menggunakan metode regionprops. Hasil ekstraksi ini kemudian digunakan sebagai variabel dalam proses klasifikasi menggunakan Jaringan Syaraf Tiruan (JST) dan dibandingkan dengan metode Support Vector Machine (SVM). Dataset yang digunakan terdiri dari 360 citra mutiara yang terbagi dalam tiga kelas: A, AA, dan AAA. Hasil klasifikasi menunjukkan bahwa metode JST menghasilkan akurasi tertinggi sebesar 98%, mengungguli SVM yang memperoleh akurasi 96%. Temuan ini menunjukkan bahwa kombinasi metode regionprops dan JST efektif dalam klasifikasi multiview citra mutiara Lombok.