Eko Arif Riyanto, Eko Arif
Unknown Affiliation

Published : 3 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 3 Documents
Search

E-Learning For Kids Education About Corona Virus Pada Sdn 01 Duren Tiga Juninisvianty, Tri; Saputri, Daniati Uki Eka; Khasanah, Nurul; Riyanto, Eko Arif; Dwi, F Lia; Seimahuira, Syarah; Salim, Agus; Rosiyadi, Didi
Indonesian Journal on Software Engineering (IJSE) Vol 6, No 2 (2020): IJSE 2020
Publisher : Universitas Bina Sarana Informatika

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/ijse.v6i2.9073

Abstract

Abstract: E-Learning For Kids Education about Corona Virus (EduCovid-19) is an e-learning website for elementary school students to be able to bridge teachers, parents and students in providing correct information about the spread, danger, and handling of corona virus outbreaks. In addition, this website is equipped with Thematic material that students get at school. By implementing a primary school curriculum for thematic lessons, it is hoped that it can adjust the learning system that is available in schools. The design of EduCovid-19 contains material in the form of education and exercises about Covid-19 and thematic lessons where in one of these materials there will be questions and answers as one of the interactive assessment methods for teachers. The method used in the design of this system is RAD and the research methods used in data collection are interviews, observation and case studies. By applying the learning system using EduCovid-19, it will be able to increase children's interest in the learning process that is currently underway, namely school from home and provide students with knowledge about the dangers and ways to overcome Covid-19.Keywords: Elearning, School, Covid-19, EduCovid-19Abstrak: E-Learning For Kids Education about Corona Virus (EduCovid-19) merupakan website elearning bagi pelajar sekolah dasar untuk dapat menjembatani guru, orang tua dan siswa dalam memberikan informasi yang benar seputar penyebaran, bahaya, dan penangan terkait wabah virus corona. Selain itu, di website ini dilengkapi dengan materi Tematik yang siswa dapatkan di sekolah. Dengan menerapkan kurikulum sekolah dasar pelajaran tematik, diharapkan dapat menyesuaikan sistem pembelajaran yang terdapat di sekolah. Perancangan EduCovid-19 ini berisi materi-materi berupa edukasi serta latihan soal seputar Covid-19 dan pelajaran tematik dimana dalam salah satu materi tersebut akan ada tanya jawab sebagai salah satu metode penilaian interaktif bagi para guru. Dalam perancangan sistem ini menggunakan metode RAD dan metode penelitian yang digunakan dalam pengumpulan data yaitu wawancara, observasi dan studi kasus. Dengan penerapan sistem pembelajaran menggunakan EduCovid-19 nantinya mampu meningkatkan ketertarikan anak dalam proses pembelajaran yang saat ini sedang berlangsung yaitu school from home dan memberikan pengetahuan kepada siswa mengenai bahaya dan cara menghindari serta mengatasi Covid-19.Kata kunci: Elearning, Sekolah, Covid-19, EduCovid-19
SISTEM PENDUKUNG KEPUTUSAN PEMILIHAN TELLER POOLING TERBAIK PADA PT. BCA Tbk. DENGAN METODE SAW (Simple Additive Weighting) Riyanto, Eko Arif; Haryanti, Tuti
Jurnal Pilar Nusa Mandiri Vol 13 No 1 (2017): Pilar Nusa Mandiri : Journal of Computing and Information System Periode Maret 2
Publisher : LPPM Universitas Nusa Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (815.791 KB) | DOI: 10.33480/pilar.v13i1.156

Abstract

Human resource management in a company greatly affect many aspects, and as a determinant of the success of the company, whether it’s on banking company or not. One of the important process in human resource management in a banking company such as PT BCA Tbk. is a selection of the best teller pooling that can spur the spirit of teller pooling to improve the performance and dedication of work. However, with the number of employees who have capabilities that are not much different from one another, sometimes the result of the assessment of each employee is relativity balanced causing difficulty for a boss to determine the right teller pooling as the best teller pooling. Therefore, the Decision Support System is very needed to give a recommendation in making a decision for the selection of the best teller pooling. One of them is by using Simple Additive Weighting Methode (SAW). SAW is a decision support method that uses a weighting summation techniques to obtain the best result of consideration based by alternatives. From the calculation reference to the criteria of tangible, reliability, responsiveness, assurance, empathy that give the result the best teller pooling by an effective calculation using Simple Additive Weighting Methode.
Analisis Kinerja Algoritma CART dan Naive Bayes Berbasis Particle Swarm Optimization (PSO) untuk Klasifikasi Kelayakan Kredit Koperasi Riyanto, Eko Arif; Juninisvianty, Tri; Nasution, Doddy Ferdian; Risnandar, Risnandar
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8 No 1: Februari 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0812988

Abstract

Koperasi memiliki peranan penting terutama untuk masyarakat kecil dan menengah. Salah satu kendala yang dirasakan oleh koperasi adalah analisa pemberian kredit yang dilakukan secara manual dan hanya berdasarkan kedekatan secara personal dengan anggota sehingga menyebabkan terjadinya kredit – kredit  macet yang tidak diduga. Oleh karena itu perlu adanya perhitungan yang sistematis dalam pemberian kredit kepada para peminjam. Teknik klasifikasi data mining merupakan salah satu teknik yang bisa digunakan dalam menentukan kelayakan kredit. Tujuan dari penelitian ini adalah untuk menentukan metode terbaik untuk klasifikasi kelayakan kredit koperasi menggunakan software Rapidminer dengan membandingkan perhitungan algoritma CART, Naive Bayes, optimasi CART + PSO, dan Naive Bayes + PSO. Data yg digunakan adalah 113 data anggota koperasi. Dari perhitungan dengan acuan kriteria pekerjaan, pendapatan, usia, jenis kelamin, jumlah pinjaman, jangka waktu, akan memperoleh metode terbaik untuk klasifikasi kelayakan kredit. Metode terbaik yang dihasilkan dari penelitian ini adalah metode Naive Bayes + PSO. Nilai accuracy yang diperoleh dari penelitian ini adalah 96,43%, nilai recall 94,12%, niilai precision 100%. Dengan nilai AUC sebesar 0,963 , penelitian ini termasuk dalam klasifikasi baik. Hasil dari penelitian ini dapat digunakan sebagai salah satu pertimbangan untuk klasifikasi kelayakan kredit pada koperasi simpan pinjam. AbstractCredit Union have an important role especially to the small and medium society. One of the problem  that credit union have is an analyzing credit manually and only based on closeness personally that can be an unexpected bad credit for credit union. Therefore, it is necessary to build a systematic calculation to give a credit for debtor. Classification technic in data mining is one of the technic that can use to classify the credit properness. The purpose of this study is to get the best method to classify the credit properness using Rapidminer by compare the calculation of CART, Naive Bayes and the optimization of CART+PSO and Naive Bayes+PSO. The study using 113 data member of credit union. From the calculation reference to the criteria of occupation, income, age, gender, loan amount, loan term, will get the best method for this study. The best method from this study is the Naive Bayes+PSO. The accuracy value obtained from this study was 96.43%, the recall value was 94.12%, and the precision value is 100%. AUC value of 0.963 indicates that this study is included in the good classification. The results of this study can be used as a consideration for the classification of the credit properness of credit union.