Claim Missing Document
Check
Articles

Found 16 Documents
Search

Pelabelan Harmonis Ganjil Pada Graf Cm,n ⊵e C4 Demetriana Kolo; Keristina Br. Ginting; Ganesha L Putra
JURNAL DIFERENSIAL Vol 5 No 1 (2023): April 2023
Publisher : Program Studi Matematika, Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jd.v5i1.9824

Abstract

Graph is an ordered pair of a vertex and edge set that related with various theories, one of them called labeling. There are a lot of types of graph labeling, one of them is odd harmonious labeling. The odd harmonious labeling is an injective function f : V (G) → {0, 1, 2, . . . , 2q − 1} such that induced a bijective function is f∗: E(G) → {1, 3, 5, · · · , 2q − 1} which is defined by f∗(uv) =f(u) + f(v). This study aims to construct an odd harmonious labeling on a graph Cm,n ⊵e C4. The results showed that a graph Cm,n ⊵e C4 is an odd harmonious graph.
A MATHEMATICAL APPROACH FOR ANALYSING THE EFFECTS OF CORRUPTION ON TRANSMISSION DYNAMICS OF MALARIA Julieta Bernadita Adelia Radja; Ariyanto Ariyanto; Ganesha Lapenangga Putra; Meksianis Z Ndii
JURNAL DIFERENSIAL Vol 5 No 1 (2023): April 2023
Publisher : Program Studi Matematika, Universitas Nusa Cendana

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35508/jd.v5i1.10593

Abstract

One of the challenges for eradication of infectious diseases is corruption. This may result in an increase in the number of infectious disease cases. In this article, the effect of corruption on the transmission dynamics of malaria is analyzed using a mathematical model. A deterministic model in the form of a system of differential equations is formulated and analyzed. Sensitivity analysis and numerical simulations are also conducted to determine the effect of parameters on the basic reproductive number. The results show that corruption has negative effects on the efforts for reducing the number of malaria cases.
L(3,2,1) Labeling of Firecracker Graph Sarbaini Sarbaini; Salman A.N.M.; Ganesha Lapenangga Putra
Journal of the Indonesian Mathematical Society VOLUME 29 NUMBER 1 (MARCH 2023)
Publisher : IndoMS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22342/jims.29.1.1177.24-35

Abstract

Let G = (V, E) be a graph. An L(3,2,1) labeling of G is a function f : V → N ∪ {0} such that for every u, v ∈ V , |f(u) − f(v)| ≥ 3 if d(u, v) = 1, |f(u) − f(v)| ≥ 2 if d(u, v) = 2, and |f(u) − f(v)| ≥ 1 if d(u, v) = 3. Let k ∈ N, a k − L(3, 2, 1) labeling is a labeling L(3,2,1) where all labels are not greater than k. An L(3,2,1) number of G, denoted by λ(3,2,1)(G), is the smallest non-negative integer k such that G has a k − L(3,2,1) labeling. In this paper, we determine λ(3,2,1) of firecracker graphs.
PELABELAN L(2, 1) PADA GRAF C_m ⊵_e C_n DAN S_m ⊵_o C_n Elisabet Lamapaha; Farly Oktriany Haning; Ganesha Lapenangga Putra
Jurnal Matematika UNAND Vol 13, No 2 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.2.75-90.2024

Abstract

Diberikan $G$ suatu graf. Pelabelan $L(2,1)$ pada suatu graf $G$ merupakan suatu pemetaan $f: V(G)\rightarrow \mathbb{Z}^+\cup\{0\}$ sehingga untuk setiap $u,v\in V(G)$ dengan $d(u,v)=1$ atau $d(u,v)=2$  memenuhi syarat selisih label kedua titik setidaknya $3-d(u,v)$. Jika $k$ merupakan bilangan bulat terbesar yang digunakan, maka pelabelan $L(2,1)$ biasa ditulis dengan pelabelan $k$-$L(2,1)$. Selanjutnya, $\lambda_{2,1}(G)$ merupakan minimum nilai $k$ sehingga terdapat pelabelan $k$-$L(2,1)$ pada $G$. Pada penelitian ini, diberikan nilai $\lambda_{2,1}$ pada graf $C_m\unrhd_e C_n$ dan graf $S_m\unrhd_o C_n$.
Characteristic Polynomial of Antiadjacency Matrix of Several Classes of Graph Join Ataupah, Anthony Arthur; Putra, Ganesha Lapenangga
Indonesian Journal of Combinatorics Vol 8, No 2 (2024)
Publisher : Indonesian Combinatorial Society (InaCombS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/ijc.2024.8.2.2

Abstract

Suppose G is a simple and undirected graph. The adjacency matrix of graph G, denoted by A(G) is a square matrix that representing graph G based on the adjacency of vertices on G, denoted by A(G). The antiadjacency matrix of graph G is a matrix B(G)=J−A(G) where J is an n×n matrixwith all the entries equal to 1. This paper deliver the result of study about the characteristic polynomial of antiadjacency matrix of several graph join, such as multipartite graph, windmill graph, and cone graph.
ZONAL LABELING OF EDGE COMB PRODUCT OF GRAPHS Soewongsono, Junita Christine; Putra, Ganesha Lapenangga; Ariyanto, Ariyanto; Pangaribuan, Rapmaida Megawaty
Jurnal Matematika UNAND Vol. 13 No. 4 (2024)
Publisher : Departemen Matematika dan Sains Data FMIPA Universitas Andalas Padang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25077/jmua.13.4.388-395.2024

Abstract

Given a plane graph $G=(V,E)$. A zonal labeling of graph $G$ is defined as an assignment of the two nonzero elements of the ring $\mathbb{Z}_3$, which are $1$ and $2$, to the vertices of $G$ such that the sum of the labels of the vertices on the border of each region of the graph is $0\in\mathbb{Z}_3$. A graph $G$ that possess such a labeling is termed as zonal graph. This paper will characterize edge comb product graphs that are zonal. The results show that $P_m\trianglerighteq_eC_n$, $C_n\trianglerighteq_e C_r$, $S_p\trianglerighteq_e C_n$, and $S_p\trianglerighteq_e F_t$ are zonal in some cases, but not in others.