Erryani, Aprilia
Pusat Penelitian Metalurgi dan Material, Lembaga Ilmu Pengetahuan Indonesia

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Struktur Mikro, Sifat Mekanik, Dan Ketahanan Korosi Paduan Mg-Zn-Ca Yang Dihasilkan Melalui Proses Metalurgi Serbuk [Microstructure, Mechanical And Corrosion Properties of Mg-Zn-Ca Alloy via Powder Metallurgy] Annur, Dhyah; Lestari, Franciska Pramudji; Erryani, Aprilia; Amal, M Ikhlasul; Sitorus, Lyandra S; Kartika, Ika
Metalurgi Vol 31, No 3 (2016): Metalurgi Vol. 31 No. 3 Desember 2016
Publisher : Pusat Penelitian Metalurgi dan Material - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (7886.384 KB) | DOI: 10.14203/metalurgi.v31i3.173

Abstract

Magnesium (Mg), known for its biodegradable and biocompatible properties, currently is being developed for biodegradable implant material. Unfortunately, application of Mg in biomedical devices was limited due to its low mechanical strength and low corrosion resistance. In this study, powder metallurgy was selected to process Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (in weight%) alloys. Holding time of sintering were varied for five and ten hours. Microstructure of Mg alloy was characterized by SEM (scanning electron microscope) and also XRD (x-ray diffraction). Compression testing was done to show the mechanical strength of Mg alloy, while corrosion resistance was examined through electrochemical testing. This study showed that ten hours of sintering time would increase mechanical properties of Mg alloy but would reduce corrosion resistance. The lowest corrosion rate was 0.32 mmpy given by Mg-29Zn-1Ca alloy and Mg-53Zn- 4Ca alloy which were sintered for five hours. Therefore, sintering time for five hours was found to be the optimum time to process Mg-Zn-Ca alloy for biodegradable implant material.AbstrakMagnesium (Mg), dengan kemampuan mampu luruh dan biokompatibilitas, merupakan salah satu logam yang kini dikembangkan sebagai material implan mampu luruh. Namun, penggunaan Mg dalam aplikasi biomedis masih terkendala kekuatan dan ketahanan korosi yang rendah. Pada penelitian kali ini proses metalurgi serbuk dipilih untuk membuat paduan Mg-3Zn-1Ca, Mg-29Zn-1Ca, and Mg-53Zn-4.3Ca (dalam %berat) dengan variasi waktu tahan sintering lima jam dan sepuluh jam. Pengaruh waktu tahan sintering dikaji dari segi kekuatan tekan dan ketahanan korosi paduan. Karakterisasi struktur mikro paduan Mg dilakukan dengan menggunakan scanning electron microscope (SEM) dan juga x-ray diffraction analysis (XRD). Dilakukan pengujian tekan untuk mengetahui nilai kekuatan paduan sedangkan ketahanan korosi dianalisis dengan menggunakan pengujian elektrokimia.  Waktu  tahan sintering selama 10 jam akan meningkatkan kekuatan mekanik namun menurunkan ketahanan korosi paduan. Laju korosi yang terbaik (0,32 mmpy) ditunjukkan oleh paduan Mg-29Zn-1Ca dan Mg-53Zn-4Ca dengan waktu tahan lima jam. Oleh karena itu, waktu tahan sintering yang optimum  adalah lima jam untuk menghasilkan paduan Mg-Zn-Ca untuk material implan.
MICROSTRUCTURE AND MECHANICAL PROPERTIES BY ADDITION OF Zn AND TiH2 IN QUATERNARY Mg ALLOY FOAM Lestari, Franciska Pramuji; Julhida, Fajar; Erryani, Aprilia; Kartika, Ika
Teknologi Indonesia Vol 41, No 1 (2018)
Publisher : LIPI Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/jti.v41i1.532

Abstract

In our current work, magnesium alloy foams with closed-cell were successfully fabricated by using space holder method, respectively.In this study, sintering process in powder metallurgy was chosen tofabricate quaternary porous Mg-Ca-Zn-TiH2 with addition NaCl as space holder and Zn as alloying. Effect of NaCl and Zn addition on porosity, phase formation and mechanical properties was observed. Sintering process was done in constant temperature sintering 600°C and holding time for 5 hours under Argon atmosphere. The porosity was evaluate with Archimedes method, while the porous structure of the resulted alloys was examined using Scanning Electron Microscope (SEM), and the phase formation was characterized by X-ray diffraction (XRD) analysis. Mechanical properties were examined using compression testing. From this study, decreasing TiH2 and increasing of Zn content in Mg alloy will increase the compressive strength because of reducing the porosity. Furthermore, according to the results, the porous Mg alloy could be considered one of the most promising scaffold materials for hard tissue regeneration.