Claim Missing Document
Check
Articles

Found 3 Documents
Search

Optimasi Prediksi Pemasaran Nasabah Deposito Bank dengan Metode Klasifikasi Logistic Regression Atika Mutiarachim; Jaluanto Sunu Punjul Tyoso
Jurnal Cakrawala Informasi Vol 4 No 1 (2024): Juni : Jurnal Cakrawala Informasi
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat (LPPM) - Institut Teknologi dan Bisnis Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54066/jci.v4i1.390

Abstract

The study aims to determine the impact of the Logistic Regression method on the classification of customer bank deposits, using a public UCI Bank Marketing dataset, which contains customer-specific information of bank deposit telemarketing activities. Data has a binomial label consisting of 'yes' for subscribers and 'no' for non-subscribers. The data preprocessing phase is done with downsampling to make the amount of data more symmetrical, then data selection and data transformation to ensure that the data used values are consistent, attribute selection to select the attributes most accurately used and give significant influence. Classification is done using the Logistic Regression algorithm. Data is shared using a split method with 90% training data and 10% testing data, with the aim of optimizing the training process. The performance result consists of an accuracy of 88.53%, a classification error value of 11.4%, can be categorized as low, showing only a few errors produced by the algorithm model, a kappa value of 0.68 close to 1, so it is categorized well, a low RMSE rating of 0.3 indicates a model accurate, and a high AUC percentage of 93.4% indicates the correct algority used in this dataset, because it produces a good performance value.
Klasifikasi Pola Pembelian Kendaraan Bermotor Untuk Merancang Strategi Promosi Terarah Menggunakan Algoritma Logistic Regression Ryan Arya Pramudya; Atika Mutiarachim; Puji Setya Sunarka
Indo-Fintech Intellectuals: Journal of Economics and Business Vol. 4 No. 5 (2024): Indo-Fintech Intellectuals: Journal of Economics and Business (in-Press)
Publisher : Lembaga Intelektual Muda (LIM) Maluku

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54373/ifijeb.v4i5.2121

Abstract

Penelitian ini bertujuan mengetahui pengaruh metode Logistic Regression pada klasifikasi kosumen kendaraan bermotor tahun 2021. Klasifikasi konsumen dilakukan untuk mengetahui kriteria konsumen secara spesifik, sehingga dapat melakukan promosi terarah langsung kepada konsumen yang tepat. Data diperoleh dari beberapa dealer penjualan motor di area Jawa Tengah dengan berbagai merk motor, pada rentang waktu Januari sampai Desember 2024. Data memiliki label binomial yang terdiri dari ‘cash’ untuk pembelian tunai dan ‘credit’ untuk pembelian kredit. Tahap preprocessing data dilakukan dengan menyamakan atribut dataset dari masing-masing dealer, downsampling untuk membuat jumlah data lebih simetris, kemudian seleksi data dan transformasi data untuk memastikan data yang digunakan nilainya konsisten, seleksi atribut untuk memilih atribut yang paling tepat digunakan dan memberi pengaruh signifikan. Klasifikasi dilakukan dengan algoritma Logistic Regression. Data dibagi menggunakan metode split dengan 70% data training dan 30% data testing,  Hasil performance akurasi 100% nilai classification error 0%, nilai kappa 1, nilai AUC 1.00 atau 100% di interpretasikan sangat baik, menunjukkan model algoritma Logistic Rgression sangat akurat dan tepat digunakan pada dataset ini.
Digital Twin-Driven Cybersecurity Risk Assessment Model for Industrial Internet of Things (IIoT) Networks in Manufacturing 4.0 Atika Mutiarachim; Royke Lantupa Kumowal; Nigar Aliyeva
Global Science: Journal of Information Technology and Computer Science Vol. 1 No. 2 (2025): June: Global Science: Journal of Information Technology and Computer Science
Publisher : International Forum of Researchers and Lecturers

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70062/globalscience.v1i2.175

Abstract

This study explores the development and application of a digital twin-driven cybersecurity risk assessment model for Industrial Internet of Things (IIoT) networks. The increasing complexity and interconnectivity of IIoT systems have expanded the attack surface, making them vulnerable to a wide range of cyber threats. The digital twin model addresses this challenge by creating real-time virtual replicas of physical systems, which can simulate and predict network vulnerabilities and attack vectors. The model uses machine learning algorithms and real-time data to simulate cyberattacks, including Distributed Denial of Service (DDoS), malware, and data breaches. By providing continuous monitoring and dynamic risk predictions, the digital twin model enhances the resilience of IIoT networks compared to traditional cybersecurity frameworks. The findings indicate that the model's ability to predict potential cyber threats and simulate various attack scenarios provides a more proactive and accurate approach to cybersecurity in IIoT environments. Additionally, the study highlights key mitigation strategies, including adaptive security mechanisms, real-time anomaly detection, and the use of lightweight encryption for resource-constrained devices. Despite its effectiveness, challenges such as computational requirements, integration with legacy systems, and scalability were identified. This research underscores the strategic importance of digital twin models in securing IIoT systems and advancing Manufacturing 4.0 ecosystems. Future research should focus on enhancing model accuracy, expanding its application to diverse industrial sectors, and improving interoperability with legacy systems to further strengthen the security posture of IIoT networks.