Claim Missing Document
Check
Articles

Found 3 Documents
Search

MODEL SIRS PADA PENYEBARAN PENYAKIT DIARE AKUT PADA BALITA DI PROVINSI JAMBI zulistia nabila; Kamid; niken rarasati
Mathematical Sciences and Applications Journal Vol. 1 No. 1 (2020): Mathematical Sciences and Applications Journal
Publisher : Department of Mathematics, Faculty of Science and Technology Universitas Jambi

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

This study aims to obtain a SIRS mathematical model on the spread of acute diarrheal disease in infants, find out the equilibrium point of the model and test the stability of these points. It is assumed that the birth rate and natural death rate are considered the same, the population is homogeneous, there is one population that is toddlers, there is only diarrheal disease in the population, and infected individuals can recover from the disease will become vulnerable again and there is no rotela immunization in infants. Based on the obtained disease-free equilibrium point, the stability criteria are tested around the disease-free and endemic equilibrium point as seen from its basic reproductive number. The disease-free equilibrium point is asymptotic stable if the basic reproductive number is less than one and unstable if the basic reproduction number is more than one. Whereas the endemic equilibrium point is stable asymptotically if the reproduction number has more than one base. The results obtained from the disease free equilibrium point are .. As for the endemic equilibrium point of the disease . Basic reproduction numbers for disease-free equilibrium points are: and .The basic reproduction number for the endemic equilibrium point of the disease is equal to: ) or . This means that the disease-free equilibrium point has R_0 <1 then the system is stable Local asymptotic means that in the under five population in Jambi Province no one is infected and no one can transmit acute diarrheal disease and the endemic equilibrium point of the disease has so the local asymptotic stable system means that every infected individual can transmit acute diarrheal disease to an average of one individual is vulnerable so that within a certain period of time the disease spreads in the population. Keywords: Stability, SIRS model, disease free equilibrium point and endemic equilibrium point.
Comparative Analysis of Triangulation Methods for Optimal Solutions to the Art Gallery Problem Marzal, Jefri; Niken Rarasati; Waladi, Akhiyar; Perdana, Yogi
PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic Vol. 13 No. 1 (2025): Maret 2025
Publisher : LPPM Universitas Islam 45 Bekasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33558/piksel.v13i1.10749

Abstract

Triangulation is the process of breaking down an n-sided polygon into triangles and it is necessary in deciding the optimal count and the position of guards in the Art Gallery Problem (AGP) There is a theoretical limit that has been established which states that the number of required guards needed to keep an eye on such a polygon is ⌊n/3⌋ and this research considers this as the limit. Among various triangulation methods, Ear Clipping and Minimum Weight are two primary approaches frequently used to achieve optimal solutions. Nonetheless, its comparison with other methods, more particularly the amount of guards required for the maximum theoretical figure, is still a gap in literature. The aim of this research is to create an AGP simulation program and test it against the theoretical upper bound, determining the number of guards required. 228 simple polygons with vertices varying between 10 and 110 were utilized in this research. The polygons were classified into three groups based on the ratio of convex to concave vertices: less concave vertices, equal amount of concave and convex vertices and vice versa. Result study shows that the Ear Clipping method is significantly superior to Minimum Weight in reducing guard requirements. Practically speaking, these advancements are important for the design of engineering systems such as surveillance systems and the surveillance of public spaces. In the context of building security system design and monitoring of large areas, these conclusions are of utmost importance.
REKONTRUKSI INTERPOLASI BILINIER MELALUI PENDEKATAN POLINOMIAL MULTILINIER DAN INTERPOLASI LINIER BERTAHAP SERTA PENERAPANNYA Puspa Hanaya Latifah Erjandsa; Syamsyida Rozi; Niken Rarasati
MATHunesa: Jurnal Ilmiah Matematika Vol. 13 No. 3 (2025)
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/mathunesa.v13n3.p67-76

Abstract

Penelitian ini dilatarbelakangi oleh penggunaan interpolasi bilinier yang sering diaplikasikan secara praktis tanpa didukung kajian matematis yang mendalam, khususnya dalam literatur berbahasa Indonesia. Tujuan penelitian adalah menganalisis formulasi matematis interpolasi bilinier dan memverifikasi konsistensi hasil antara pendekatan teoritis dan aplikatif. Penelitian ini menggunakan metode pendekatan kuantitatif dengan studi literatur dan analisis numerik melalui dua pendekatan: (1) pendekatan polinomial multilinier dengan penyelesaian sistem persamaan linier menggunakan eliminasi Gauss-Jordan dan (2) pendekatan interpolasi linier bertahap sepanjang sumbu dan . Hasil penelitian berhasil menurunkan rumus interpolasi bilinier yang identik melalui kedua pendekatan. Verifikasi dilakukan dengan menerapkan rumus tersebut untuk mengestimasi produksi teh basah yang menunjukkan hasil konsisten dengan pola data. Dengan demikian, penelitian menegaskan bahwa interpolasi bilinier merupakan metode matematis yang memiliki dasar teoritis kuat dimana pendekatan polinomial dan interpolasi linier saling melengkapi dalam membuktikan kebenaran rumus.