Claim Missing Document
Check
Articles

Found 2 Documents
Search

Enhancing Multilevel Inverter Performance: A Novel Dung Beetle Optimizer-based Selective Harmonic Elimination Approach Taha, Taha A.; Neamah, Muthanna Ibrahim; Ahmed, Saadaldeen Rashid; Taha, Faris Hassan; Bektaş, Yasin; Desa, Hazry; Yassin, Khalil Farhan; Ibrahim, Marwa; Hashim, Abdulghafor Mohammed
Journal of Robotics and Control (JRC) Vol 5, No 4 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i4.21722

Abstract

This paper introduces a novel approach for enhancing the performance of multilevel inverters by applying a dung beetle optimizer (DBO)-based Selective Harmonic Elimination (SHE) technique. Focusing on a 3-phase multilevel inverter (MLI) with a non-H-bridge structure, the proposed method offers advantages such as cost-effective hardware implementation and eliminating the traditional H-bridge inverter requirement. To assess its efficacy, we compare the presented DBO-based SHE technique (DBOSHE) with Genetic Algorithm (GA) and Particle Swarm Optimization (PSO), evaluating their ability to determine optimal switching angles for achieving low-distorted load voltage. Unlike methods reliant on time-consuming calculations or fixed solutions, DBO provides a flexible approach, considering multiple possibilities to yield accurate switching angles. Using Simulink, harmonic component values and Total Harmonic Distortion (THD) are obtained for each optimization technique, specifically emphasizing on 9-level and 11-level MLI topologies. Our study aims to identify the most effective optimization technique for achieving lower THD and THDe values while eliminating odd-order harmonics from the 3-phase load voltage. Finally, we demonstrate the effectiveness of employing DBO for THD and THDe optimization within the SHE technique.
Optimizing Small-Scale Wind Energy Generation: Site-Specific Wind Speed Analysis and Turbine Placement Strategies Ahmed, Shouket A.; Çiçek, Adem; Bektas, Enes; Yassin, Khalil Farhan; Radhi, Ahmed Dheyaa; Awad, Raad Hamza; Almalaisi, Taha Abdulsalam; Itankar, Nilisha; Sekhar, Ravi; Ahmed, Ahmed H.
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1792

Abstract

Wind is an effective renewable power source suitable for localized electricity production when regional environmental factors have substantial impact on system output. The research studies the best wind turbine placement through wind speed variability studies conducted with calibrated anemometers and data loggers that assess site conditions. A data-based assessment method creates the research's main contribution which facilitates the optimization of wind power potential measurement for enhanced energy efficiency. The research methodology includes continuous Vantage Pro2 equipment together with anemometers at different heights for wind speed observation while performing accuracy-based calibration analysis. The research shows that elevating the turbine from seven meters to ten meters leads to a 12 percent growth in the amount of power produced. The power output of wind energy decreases as wind speed changes because of environmental conditions so proper installation locations become essential. Energy performance increases best when selecting sites which feature reliable and elevated wind speeds. This research provides useful knowledge about enhancing decentralized power generation through wind energy but it cannot be easily scaled up to bigger systems. The study demonstrates that specific site assessments together with practical recommendations will enhance the efficiency of small-scale wind energy systems.