Claim Missing Document
Check
Articles

Found 5 Documents
Search

Enhancing Harmonic Reduction in Multilevel Inverters using the Weevil Damage Optimization Algorithm Bektaş, Enes; Aldabbagh, Mohammed M; Ahmed, Saadaldeen Rashid; Hussain, Abadal-Salam T.; Taha, Taha A.; Ahmed, Omer K; Ezzat, Sarah B.; Hashim, Abdulghafor Mohammed
Journal of Robotics and Control (JRC) Vol 5, No 3 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i3.21544

Abstract

In this study, we investigate the efficacy of the newly developed Weevil Damage Optimization Algorithm (WDOA) for addressing harmonic distortion in multilevel inverters. Specifically, harmonics of the fifth and seventh orders are targeted for elimination in a seven-level cascaded multilevel inverter, while harmonics of the fifth, seventh, eleventh, and thirteenth orders are addressed in an eleven-level cascaded multilevel inverter. Through simulation studies encompassing different modulation index values, we demonstrate the effectiveness of the WDOA optimization algorithm in selectively removing harmonics and reducing overall harmonic distortion. While the results showcase promising outcomes, further quantitative metrics and comparative analysis are warranted to fully evaluate the algorithm's performance and its potential implications for practical applications in multilevel inverter systems.
Enhanced Transformer Protection Using Fuzzy-Logic-Integrated Differential Relays: A Comparative Study with Rule-based Methods Hussein, Raad Ibrahim Hussein; Gökşenli, Nurettin; Bektaş, Enes; Teke, Mustafa; Tümay, Mehmet; Yaseen, Ethar Sulaiman Yaseen; Bektaş, Yasin; Taha, Taha A.
Journal of Robotics and Control (JRC) Vol 5, No 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.21937

Abstract

The power transformers are the important part of electrical networks where transformer reliability and operational lifetime depends on sufficiently accurate and reliable protective means. Other traditional forms of differential protection that were developed initially also suffer from the inability to distinguish between a fault and normal operation such as inrush currents in transformers and CT saturation. This paper presents the development of an improved differential relay augmented by Fuzzy-Logic Control System (FLC), to improve (a) dependability, (b) performance of the existing transformer protection systems, and (c) accuracy in fault identification possible due to uncertainty and non-linearity in transformer operation. They include the proposed methodology compared to the traditional Rule-based current differential method in outlining the protection settings. MATLAB/Simulink model of the power transformer and protection methods suggested in the study form a part of the investigation. Computer simulations show that the presented scheme provides a substantial increase in the speed and resolution of fault detection and fault types identification relating to current differential method based on the Rule. The system’s accuracy rate is the average of 98% for internal faults and 95% for external faults while its response time is 25ms for internal faults and 30ms for external faults. Furthermore, the Fuzzy-Logic-based system has an 90% efficiency in detect the defect and 85% efficiency in identify the inrush currents. The findings of this research prove that the differential relay based on Fuzzy-Logic enhances the flexibility and reliability of transformer protection and opens the road to the introduction of further improvements in the intelligent protection systems in the future.
Enhanced Transformer Protection Using Fuzzy-Logic-Integrated Differential Relays: A Comparative Study with Rule-based Methods Hussein, Raad Ibrahim Hussein; Gökşenli, Nurettin; Bektaş, Enes; Teke, Mustafa; Tümay, Mehmet; Yaseen, Ethar Sulaiman Yaseen; Bektaş, Yasin; Taha, Taha A.
Journal of Robotics and Control (JRC) Vol. 5 No. 5 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i5.21937

Abstract

The power transformers are the important part of electrical networks where transformer reliability and operational lifetime depends on sufficiently accurate and reliable protective means. Other traditional forms of differential protection that were developed initially also suffer from the inability to distinguish between a fault and normal operation such as inrush currents in transformers and CT saturation. This paper presents the development of an improved differential relay augmented by Fuzzy-Logic Control System (FLC), to improve (a) dependability, (b) performance of the existing transformer protection systems, and (c) accuracy in fault identification possible due to uncertainty and non-linearity in transformer operation. They include the proposed methodology compared to the traditional Rule-based current differential method in outlining the protection settings. MATLAB/Simulink model of the power transformer and protection methods suggested in the study form a part of the investigation. Computer simulations show that the presented scheme provides a substantial increase in the speed and resolution of fault detection and fault types identification relating to current differential method based on the Rule. The system’s accuracy rate is the average of 98% for internal faults and 95% for external faults while its response time is 25ms for internal faults and 30ms for external faults. Furthermore, the Fuzzy-Logic-based system has an 90% efficiency in detect the defect and 85% efficiency in identify the inrush currents. The findings of this research prove that the differential relay based on Fuzzy-Logic enhances the flexibility and reliability of transformer protection and opens the road to the introduction of further improvements in the intelligent protection systems in the future.
Optimizing Small-Scale Wind Energy Generation: Site-Specific Wind Speed Analysis and Turbine Placement Strategies Ahmed, Shouket A.; Çiçek, Adem; Bektas, Enes; Yassin, Khalil Farhan; Radhi, Ahmed Dheyaa; Awad, Raad Hamza; Almalaisi, Taha Abdulsalam; Itankar, Nilisha; Sekhar, Ravi; Ahmed, Ahmed H.
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1792

Abstract

Wind is an effective renewable power source suitable for localized electricity production when regional environmental factors have substantial impact on system output. The research studies the best wind turbine placement through wind speed variability studies conducted with calibrated anemometers and data loggers that assess site conditions. A data-based assessment method creates the research's main contribution which facilitates the optimization of wind power potential measurement for enhanced energy efficiency. The research methodology includes continuous Vantage Pro2 equipment together with anemometers at different heights for wind speed observation while performing accuracy-based calibration analysis. The research shows that elevating the turbine from seven meters to ten meters leads to a 12 percent growth in the amount of power produced. The power output of wind energy decreases as wind speed changes because of environmental conditions so proper installation locations become essential. Energy performance increases best when selecting sites which feature reliable and elevated wind speeds. This research provides useful knowledge about enhancing decentralized power generation through wind energy but it cannot be easily scaled up to bigger systems. The study demonstrates that specific site assessments together with practical recommendations will enhance the efficiency of small-scale wind energy systems.
Experimental Analysis of Fresnel Lens-Based Solar Desalination Systems with Copper Receivers for Enhanced Thermal and Electrical Performance Mahmood, Abdulkareem Nasir; Azmi, Syahrul Ashikin binti; El-Khazali, Reyad; Çiçek, Adem; Assi, Saad A.; Al-Naimi, Taha Mahmoud; Majdi, Hasan S.; Bektas, Enes; Radhi, Ahmed Dheyaa; Hussain, Abadal-Salam T.
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1852

Abstract

Solar desalination represents a breakthrough technology for creating sustainable freshwater because it meets both the water quality standards and technology efficiency requirements of modern times. The current desalination methods, which depend on fossil fuels, encounter major obstacles regarding their energy requirements and economical performance. The research investigates the improvement of solar desalination performance through coupling Fresnel lens technology with copper-based receivers to maximize thermal characteristics and power generation benefits. This research successfully unites Fresnel lenses of high performance with copper receivers to reach increased steam temperatures alongside power production during the same procedure. The research team performed experimental tests using a system that included four large Fresnel lenses in Sharjah, UAE. Under different operating settings, the system demonstrated its performance by measuring its flow rates together with ambient temperatures and recording the steam output values. The experimental data showed that bigger Fresnel lenses boosted the steam temperature beyond 1000°C as well as pushing pressure levels to 8 bar, which led to remarkable system efficiency benefits. The copper receiver system generated 775 mA DC electric current, which collectively enhanced the system's power efficiency. The tested combination of Fresnel lenses and copper receivers demonstrates an effective way to enhance solar desalination systems, according to observed experimental data. The dualfunction technology combines desalination efficiency improvement with electricity production capabilities to establish a sustainable freshwater production method for arid regions. This investigation creates a basis for developing economical renewable desalination systems going forward.