Claim Missing Document
Check
Articles

Found 14 Documents
Search

Comparative Analysis of PID Tuning Methods for Speed Control in Mecanum-Wheel Electric Wheelchairs Thongpance, Nuntachai; Chotikunnan, Phichitphon; Wongkamhang, Anantasak; Chotikunnan, Rawiphon; Imura, Pariwat; Khotakham, Wanida; Nirapai, Anuchit; Roongprasert, Kittipan
Buletin Ilmiah Sarjana Teknik Elektro Vol. 7 No. 2 (2025): June
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/biste.v7i2.13046

Abstract

This study compares two PID controller tuning methods, particle swarm optimization (PSO) and Cohen-Coon, employed for speed control of an omnidirectional Mecanum-wheel electric wheelchair. Mecanum wheels improve maneuverability on powered mobility platforms; yet, controlling these systems is difficult due to nonlinearities and directional coupling effects. This work investigates the effectiveness of PSO as a sophisticated alternative to traditional PID tuning methods, effectively tackling this issue. This study evaluates P, PI, PD, and PID controllers tuned by both Cohen-Coon and PSO methods, applied to a DC motor system simulating real-world wheelchair actuation. Step response-based system identification models the motor using MATLAB/Simulink. Simulations of a 12V DC motor are examined using controlled-step time-domain inputs. Every controller configuration is subjected to evaluation for overshoot, root mean square error (RMSE), rise time, and settling time. The PSO-tuned PID controller exhibited enhanced performance, characterized by a rise time of 2.06 s, a settling time of 2.37 s, an overshoot of 0.78%, and an RMSE of 4.59, far surpassing the Cohen-Coon variant, which had a settling time of 6.12 s and an overshoot of 20.14%. The results indicate that PSO enhances both transient and steady-state performance in intricate and disturbance-sensitive systems, including Mecanum wheelchairs. Despite PSO's increased computing complexity during offline tuning and the necessity for meticulous parameter selection, its advantages can be precomputed and effectively utilized in real-time embedded systems. This study highlights the importance of safety, dependability, and responsiveness, illustrating that PSO is a scalable and efficient method for improving assistive robotic systems.
Enhancing MG996R Servo Motor Performance Using PSO-Tuned PID and Feedforward Control Chotikunnan, Phichitphon; Pititheeraphab, Yutthana; Angsuwatanakul, Thanate; Prinyakupt, Jaroonrut; Puttasakul, Tasawan; Chotikunnan, Rawiphon; Thongpance, Nuntachai
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1854

Abstract

The aim of this research is to improve the precision of factory-locked MG996R servo motors, which are frequently employed in biomedical and robotic applications. These motors are characterized by the absence of inherent feedback channels and adjustable internal settings. The proposed technique proposes a non-invasive control strategy that utilizes externally obtained feedback to enable closed-loop control without requiring any modifications to the interior circuitry. The scientific contribution consists of the development of an outer-loop PID control framework that has been optimized using Particle Swarm Optimization (PSO) and enhanced with feedforward compensation. By utilizing the inherent potentiometer, this method ensures the preservation of hardware integrity and enables real-time angle feedback. A model fit of 96.94% was achieved by establishing a second-order discrete-time model using MATLAB's System Identification Toolbox. Particle Swarm Optimization (PSO) was employed to optimize PID improvements offline by minimizing the Integral of Squared Error (ISE). In both experimental and simulated environments, the controller's effectiveness was assessed using 2 rad/s sine wave inputs and a 10° step. The PSO-PID with feedforward controller achieved optimal results, achieving an RMSE of 0.5313° and an MAE of 0.1630° in simulations, as well as an MAE of 0.8497° in hardware step response. The requirement for gain scaling in embedded systems was underscored by the instability of the standalone PSO-PID controller. This method offers a pragmatic, scalable solution for applications such as assistive robotics, prosthetic joints, and surgical instruments. In order to achieve sub-degree precision in safety-critical environments, future endeavors will entail the implementation of adaptive gain tuning and enhanced resolution sensing.
Noise-Reduced 3D Organ Modeling from CT Images Using Median Filtering for Anatomical Preservation in Medical 3D Printing Chotikunnan, Phichitphon; Chotikunnan, Rawiphon; Puttasakul, Tasawan; Khotakham, Wanida; Imura, Pariwat; Prinyakupt, Jaroonrut; Thongpance, Nuntachai; Srisiriwat, Anuchart
Journal of Robotics and Control (JRC) Vol. 6 No. 4 (2025)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v6i4.26665

Abstract

This study offers a systematic approach to improving the reconstruction of three-dimensional anatomical models from CT imaging data. The main difficulty tackled is the maintenance of internal bone features during denoising, essential for producing clinically relevant models. A nonlinear filtering strategy was implemented, utilizing a 3×3 median filter alongside manual refinement to eliminate salt-and-pepper noise while preserving anatomical information. The study presents a reproducible image-processing pipeline that improves structural clarity and enables material-efficient 3D printing while preserving internal bone integrity. A publicly available dataset including 813 anonymized chest CT scans (512×512 pixels, 16-bit grayscale) from Zenodo was employed. Preprocessing included grayscale normalization, brightness adjustment, and the application of median filters with kernel sizes from 3×3 to 9×9, followed by artifact removal using FlashPrint software before STL conversion. The 3×3 median filter achieved an excellent balance between noise reduction and anatomical clarity, outperforming mean filtering and larger kernels in maintaining edge detail. Although statistical evaluation was not conducted, visual analysis validated an 18.07 percent decrease in print time and a 17.88 percent reduction in filament consumption. The technology exhibited actual efficacy in generating high-quality anatomical models. Future endeavors will incorporate automated segmentation and sophisticated denoising methodologies to enhance applicability in surgical simulation, clinical education, and personalized healthcare planning.
Comparative Analysis of PID-Driven Data-Based and PSO-Tuned Fuzzy Membership Functions for Robotic Manipulator Control Chotikunnan, Phichitphon; Khotakham, Wanida; Imura, Pariwat; Chotikunnan, Rawiphon; Wongkamhang, Anantasak; Thongpance, Nuntachai
Journal of Fuzzy Systems and Control Vol. 3 No. 3 (2025): Vol. 3 No. 3 (2025)
Publisher : Peneliti Teknologi Teknik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59247/jfsc.v3i3.335

Abstract

Robotic manipulators require control systems that are both responsive and precise in order to ensure accurate tracking and stability in dynamic environments. Conventional fuzzy logic controllers that are based on proportional integral derivative (PID) methods frequently encounter difficulties in achieving fast response, minimal steady-state error, and low overshoot. This study presents a comparative evaluation of a PID-driven data-based fuzzy logic controller and a particle swarm optimization (PSO) tuned fuzzy logic controller for a three-axis robotic manipulator implemented in Simulink. Both controllers used Gaussian membership functions within a Mamdani inference structure. The PSO algorithm was employed to optimize fuzzy input-scaling gains using a composite performance index that incorporated absolute error, control effort, overshoot penalty, and steady-state error. The simulation results indicate that the PSO-tuned controller consistently outperformed the benchmark. On the R-axis, it shortened rise and settling times and reduced overshoot, mean absolute error (MAE), and root mean square error (RMSE). On the T-axis, response speed and error values improved, although overshoot increased, indicating a trade-off between speed and stability. On the Z-axis, the PSO controller achieved a substantial decrease in overshoot, lower error metrics, and faster stabilization. Overall, the PSO-based tuning process preserved steady-state stability while improving transient performance on all axes. These findings show that metaheuristic optimization is an effective and practical method for enhancing fuzzy logic controllers in robotic manipulators. This approach has potential applications in precision manufacturing, service automation, and surgical robotics.