Claim Missing Document
Check
Articles

Found 3 Documents
Search

EVALUASI KINERJA BUNDARAN ALE ALE DI KOTA KETAPANG Sigit Prabowo; Ferry Juniardi; Siti Nurlaily Kadarini
JeLAST : Jurnal Teknik Kelautan , PWK , Sipil, dan Tambang Vol 8, No 1 (2021): JeLast Edisi Februari 2021
Publisher : JeLAST : Jurnal Teknik Kelautan , PWK , Sipil, dan Tambang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/jelast.v8i1.44797

Abstract

Untuk mencegah masalah pada Bundaran Ale Ale diperlukan evaluasi pada kinerja bundaran. Penelitian ini mengkaji kinerja Bundaran Ale Ale pada kondisi sekarang tahun 2020 dan kondisi akan datang pada tahun 2035. Survei dilakukan 5 hari pukul 06.00-18.00. Dianalisa berdasarkan MKJI 1997 dan simulasi dengan Software Vissim, kemudian disusun rencana alternatif perbaikan bundaran. Berdasarkan hasil survei didapat volume jam sibuk di hari Senin jam 16.00-17.00. Derajat kejenuhan tertinggi pada tahun 2020 adalah 0,65, tundaan bundaran 9,57 detik/smp dan peluang antrian 10%-24% artinya kondisi lalu lintas Bundaran Ale-Ale masih memenuhi MKJI 1997 (DS<0,75). Dilakukan proyeksi 15 tahun yang akan datang tahun 2035 untuk mengantisipasi masalah lalu lintas yang akan terjadi dan didapat nilai derajat kejenuhan 0,79, tundaan bundaran 12,16 detik/smp dan peluang antrian 17%-39%. Kemudian dilakukan perbaikan pada tahun 2035, alternatif pertama perbaikan geometrik bagian jalinan didapat derajat kejenuhan 0,67, tundaan bundaran 10,81 detik/smp dan peluang antrian 12%-26%. Alternatif kedua perencanaan ulang bundaran sesuai MKJI 1997 didapat derajat kejenuhan sebesar 0,65, tundaan bundaran 10,70 detik/smp dan peluang antrian 12%-26%. Direkomendasikan perbaikan bundaran tahun 2035 dengan alternatif perencanaan ulang bundaran sesuai MKJI 1997, karena memiliki kinerja dan tingkat pelayanan yang memenuhi.Kata Kunci: bundaran, simpang, kinerja, MKJI 1997
Tinjauan Yuridis Penolakan Permohonan Kasasi oleh Mahkamah Agung Terkait Putusan Bebas dalam Tindak Pidana Korupsi Enggelina Margaritha Fiah; Debi F.Ng. Fallo; Sigit Prabowo
JOURNAL OF ADMINISTRATIVE AND SOCIAL SCIENCE Vol. 6 No. 2 (2025): Juli: Journal of Administrative and Sosial Science (JASS)
Publisher : Sekolah Tinggi Ilmu Administrasi (STIA) Yappi Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55606/jass.v6i2.1981

Abstract

Corruption and the rule of law are two things that are not foreign in the order of national, state and social life. Corruption seems to be a vocabulary that is experiencing inflation because it is most often used in almost all news reports. However, in corruption cases, judges are often less observant in paying attention to the facts presented in the trial so that often defendants in corruption cases are not punished commensurate with their actions, some even end in acquittals. The research method used by the author is normative legal research, by reviewing or examining laws and court decisions related to the legal problems faced. The sources of legal materials used are primary legal materials, secondary legal materials, and tertiary legal materials which are then analyzed descriptively qualitatively. The results of this study indicate that The basis for the Supreme Court's consideration in rejecting the public prosecutor's cassation application regarding the acquittal in corruption (Case Study of Supreme Court Decision Number: 2205 K/Pid.Sus/2022) is by considering the legal and non-legal aspects. Regarding the effectiveness of the decision in providing a deterrent effect for perpetrators of corruption in the future, judges in considering a decision should pay close attention to the facts in the trial so that the defendant's actions can be subject to sanctions and in the future can provide a deterrent effect on perpetrators of corruption in the future. The judge's consideration in imposing a sentence after the examination process in court must pay maximum attention to the sense of justice of the actions that have been committed by the defendant so that the verdict can provide a deterrent effect for perpetrators of corruption in the future.
Machine Learning–Based Prediction of Oil Palm Plantation Yield Using Random Forest Regression Mayang Modelina Cynthia; Sigit Prabowo; Jheki Pranta Singarimbun; Muhammad Akbar Firdaus; Hafizh Al-Ghifari Rangkuti Rangkuti; Rido Favorit Saronitehe Waruwu; Muhammad Amin
International Journal of Health Engineering and Technology Vol. 4 No. 5 (2026): IJHESS JANUARY 2026
Publisher : CV. AFDIFAL MAJU BERKAH

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55227/ijhet.v4i5.572

Abstract

The rapid development of digital technology has led to a significant increase in the volume and diversity of customer transaction data, making big data a crucial asset for organizations in designing business strategies. However, abundant data will not provide meaningful value if it is not analyzed appropriately. This study aims to implement data science techniques to extract insights from big data of customer transactions using the Python programming language. The research adopts a descriptive–exploratory quantitative approach by utilizing customer transaction datasets as secondary data. The analysis stages include data preprocessing, exploratory data analysis (EDA), and the application of data science algorithms such as clustering and predictive analysis using Python libraries including pandas, numpy, matplotlib, and scikit-learn. The results show that the data science approach is capable of identifying customer behavior patterns based on spending value, transaction frequency, and purchasing habits over a specific period. Furthermore, the clustering model successfully groups customers into several segments with distinct characteristics, providing valuable insights that can be used as a basis for more effective and personalized marketing decision-making. Therefore, this study confirms that the implementation of data science using Python can assist companies in transforming big data of customer transactions into high-value information that supports improved business strategies and customer retention.