Claim Missing Document
Check
Articles

Found 2 Documents
Search

Identification of the Distribution and Volume of Iron Sand in the Gura Beach Area Using the Wenner-Schlumberger Configuration Geoelectric Method Tjinta, Yumarti G B; Sadjab, Bayu Achil; Kurnia, Kurnia; Janis, Harsen Berg; Yusniar, Masitah; Buka, Oktosea; Iwamoni, Steven; Nur, Adrian Rahmat
International Journal of Hydrological and Environmental for Sustainability Vol 2, No 2 (2023): International Journal of Hydrological and Environmental for Sustainability
Publisher : CV FOUNDAE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58524/ijhes.v2i2.253

Abstract

The Naniura NRD300 HF tool has been used in research using the Wenner-Schlumberger configuration geoelectric method to determine the direction of iron sand distribution, the volume of iron sand, and the concentration of iron sand in the Gura beach area. The collected measurement results are then processed by the RES2DINV software into a 2 Dimension (2D) cross-section that shows the distribution values of the subsurface layer as shown by a color image. Once saved in (.xyz) format, the RES2DINV software results are processed in RockWork software to create pseudo-3D cross sections. The RES2DINV software's results show that line 1's resistivity value ranges from 39.6 to 1000 Ωm, whereas line 2's resistivity value ranges from 0.16 to 1.7 Ωm. These findings suggest that line 2 has a lower resistivity value than line 1 does. The volume of iron sand processed by RockWork software is 221,000 cubic meters for linek 2 and 273,000 cubic meters for line 1. The distribution of iron sand deposits in the study region is south to north, based on the volume of iron sand in line 1, which is bigger. A method used to determine the composition of the minerals present in a sample is called X-ray fluorescence (XRF). The results of analyzing the Fe content in line 2 are 55.01%, which is higher when compared to the Fe content in line 1, which is 40.5%.
Geoelectric Interpretation of Wenner-Schlumberger Configuration Using Res2Dinv Software: A Case Study of 2D Mapping of Seawater Intrusion in a Landslide Potential Area, North Halmahera District, Indonesia Tambanaung, Andrisal; Sadjab, Bayu Achil; Kurnia, Kurnia; Janis, Harsen Berg; Yusniar, Masitah; Buka, Oktosea; Iwamoni, Steven; Nur, Adrian Rahmat
International Journal of Hydrological and Environmental for Sustainability Vol 3, No 1 (2024): International Journal of Hydrological and Environmental for Sustainability
Publisher : CV FOUNDAE

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.58524/ijhes.v3i1.378

Abstract

Research has been carried out on landslides in Saluta-Pelita Village, North Galela District, North Halmahera Regency, Indonesia using the Wenner-Schlumberger method using a Geoelectric Resistivity tool - Naunira NRD 300 HF. This research aims to determine the structure of the subsurface layer in the potential landslide area of Saluta-Pelita Village. In addition, this research aims to determine the slip plane (boundary layer) of sea water intrusion in the research area. The measurement results are processed using Res2Dinv software for 2D resistivity which describes the subsurface layer shown in color. The measurement results on track 1 show a clay layer with a resistivity value of 3.1 ohm -27 ohm at a distance of 1-80 meters (blue and green), a silt layer of 44.3 ohm - 184.1 ohm at a depth of 1-20 meters (Yellow) which is a slip plane (boundary layer) of sea water intrusion with a path length of 40 meters, conglomerate 210 ohm (red) at a depth of more than 7.50 meters. In track 2 there is a layer of clay with a resistivity of 1.4 ohm - 39 ohm at a depth of 1-24 meters (blue and green), silt 43.1 m-185.6 m (yellow) is the slip plane (layer boundary) of sea water intrusion with a 95 meter long track, a conglomerate layer with a resistivity of 203.4 ohm - 407.8 ohm (red) at a depth of more than 12.8 meters. On track 3 there is a layer of clay with a resistivity of 0.186 ohm - 31.4 ohm (blue and green) at a depth of up to 24 meters with a length of more than 120 meters, silt with a resistivity value of 44.4 ohm - 189 ohm (yellow) which is a slip plane (boundary layer) sea water intrusion with a path of 65 meters at a depth of 2.50 meters-24.9 meters.