Claim Missing Document
Check
Articles

Found 3 Documents
Search

Comparison of Actual Results and PVSyst Simulation in the Design of Off-Grid Solar Power Generation System (PLTS) in Karuni Village, Southwest Sumba Siregar, Marsul; Pardosi, Cristoni Hasiholan; Bachri, Karel Octavianus; Nur, Tajuddin; Pandjaitan, Lanny W.
Jurnal Elektro Vol 17 No 1 (2024): Jurnal Elektro: April 2024
Publisher : Prodi Teknik Elektro, Fakultas Teknik Unika Atma Jaya Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25170/jurnalelektro.v17i1.5419

Abstract

This research aims to compare the actual production with the simulations using the PVSyst software for the Off-Grid Solar Power Plant (PLTS) in Karuni Village, Southwest Sumba. The Off-Grid PLTS in Karuni Village is a vital solution for improving remote areas' electricity access. Actual energy production data from the PLTS were obtained from monitoring systems, while simulation results were obtained through PVSyst. The analysis results indicate a difference of approximately 10% between the actual and simulated results. It observed that it is influenced by variability in local weather conditions, maintenance, system management levels, and limitations of the simulation model. The implications of this research emphasize the importance of using accurate data in simulations, improving PLTS system maintenance, and developing more sophisticated simulation models. Recommendations for further research include further analysis of factors influencing the differences in results. This study provides valuable insights into the planning and management of Off-Grid PLTS. It offers perspectives on enhancing the accuracy of future PLTS system planning and management.
Design and Implementation of A Dual-Axis Solar Tracking System using Arduino Uno Microcontroller Pardosi, Cristoni Hasiholan; Siregar, Marsul; Pandjaitan, Lanny W.
Jurnal ELTIKOM : Jurnal Teknik Elektro, Teknologi Informasi dan Komputer Vol. 8 No. 1 (2024)
Publisher : P3M Politeknik Negeri Banjarmasin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31961/eltikom.v8i1.1105

Abstract

This paper presents a dual-axis solar tracking system developed and evaluated using LDR sensors and stepper motors, controlled by an Arduino Uno microcontroller. The aim was to enhance photovoltaic energy efficiency by designing a system capable of automatically adjusting the position of solar panels to follow the sun's movement throughout the day. Comparative testing between static solar panels and those equipped with solar trackers demonstrated that the latter produced 35% more power on average. Additionally, the dual tracking system showed a 14% improvement in efficiency over previous averages noted in existing references. Analysis of azimuth and elevation angles confirmed that the solar tracker accurately adjusted the panels' position, significantly boosting solar energy capture. This finding is consistent with prior research, which also supports the efficacy of solar trackers in enhancing photovoltaic efficiency. Future research should expand testing to include various weather and environmental conditions and focus on developing more advanced control algorithms to enhance system responsiveness. Continuous advancements in solar tracking technology are vital for maximizing solar energy potential and facilitating a transition to a more sustainable society.
Evaluation of The Impact of Photovoltaic Laboratories Development on Higher Education and Industry SIREGAR, MARSUL; PARDOSI, CRISTONI HASIHOLAN; BACHRI, KAREL OCTAVIANUS; NUR, TAJUDDIN; PANDJAITAN, LANNY W.
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 12, No 3: Published July 2024
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v12i3.759

Abstract

ABSTRAK Transisi energi dari energi konvensional ke energi terbarukan semakin meningkat, sejalan dengan kesadaran akan keberlanjutan penggunaan energi terbarukan secara global. Laboratorium Fotovoltaik Universitas Katolik Indonesia Atma Jaya berkapasitas 5,2 kWp dikembangkan untuk mendukung pendidikan dan pelatihan industri. Tulisan ini menjelaskan dampak positif Laboratorium terhadap sudut pandang mahasiswa dan industri, yaitu tentang kinerja panel surya, evaluasi sistem on-grid dan off-grid, serta pemeliharaan system. Berdasarkan kepuasan mahasiswa disimpulkan sangat puas dan puas berkisar 93,17%, dengan rincian sangat puas 50,14%, dan puas 43,03%. Sedangkan Industri menunjukkan sangat puas dan puas sebesar 93,96%, dengan rincian sangat puas 44,99%, dan puas 48,97%. Kata kunci: Fotovoltaik, Energi Surya, Pendidikan Tinggi, Studi Eksploratori.  ABSTRACT The energy transition from conventional energy to renewable energy is increasing, in line with the awareness of the sustainability of renewable energy use globally. The Atma Jaya Catholic University Photovoltaic Laboratory with a capacity of 5.2 kWp was developed to support industrial education and training. This paper describes the positive impact of the Laboratory from the perspective of students and industry, namely on the performance of solar panels, evaluation of on-grid and off-grid systems, and system maintenance. Based on student satisfaction, it is concluded that very satisfied and satisfied are around 93.17%, with details of very satisfied 50.14%, and satisfied 43.03%. While the industry shows very satisfied and satisfied of 93.96%, with details of very satisfied 44.99%, and satisfied 48.97%. Keywords: Photovoltaic, Solar Energy, Higher Education, Exploratory Study.