Claim Missing Document
Check
Articles

Found 4 Documents
Search

Analisis Ujaran Kebencian di Media Sosial Terhadap Denise Chairesta Dalam Kajian Linguistik Forensik Rama Yunita Pratama; Apriliani Putri; Enzari Puspaningtyas; Jessyca Simbolon; Linda Ayu Kartika
Jurnal Motivasi Pendidikan dan Bahasa Vol. 1 No. 4 (2023): Desember : Jurnal Motivasi Pendidikan dan Bahasa
Publisher : Lembaga Pengembangan Kinerja Dosen

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59581/jmpb-widyakarya.v1i4.2132

Abstract

Social media has provided space for freedom of opinion to all its users. However, this has caused not only positive impacts but also negative impacts. This research aims to describe hate speech made by haters or someone who hates Denise Chairesta. The data source for this research was taken from the social media comments column on Instagram, Tiktok and Denise Chairesta's personal YouTube. The research method used is a descriptive method and uses a qualitative approach. The data collection techniques used in the research are documentation techniques and observation techniques with data analysis techniques which consist of three stages, namely data reduction, data presentation and conclusion. The results of the research found eight pieces of data that led to hate speech towards Denise Chairesta.
KLASIFIKASI JENIS POHON MANGROVE BERDASARKAN CITRA DAUN MENGGUNAKAN METODE K-NEAREST NEIGHBOUR (KNN) Irfan Ibrahim; Maulana Fitra Ramadhani; Muhammad Ridho; M. Wisnu Adjie Pramudya; Putri Suci Renita; Apriliani Putri; Nadia Ayu Putri Priyani; Seffi Rozahana; Adinda; Nurul Hayaty
Sustainable Vol 13 No 2 (2024): Jurnal Sustainable : Jurnal Hasil Penelitian dan Industri Terapan
Publisher : Fakultas Teknik Universitas Maritim Raja Ali Haji

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31629/h45hyv18

Abstract

Studi ini dilakukan untuk mengimplementasikan algoritma KNN (K-Nearest Neighbour) dalam klasifikasi bakau menggunakan citra daun. Penelitian ini menggunakan 1.550 data citra daun Mangrove dengan menggunakan python dibagi menjadi empat kelas oleh Avicennia alba, Bruguiera gymnorrhiza, Rhizophora apiculata dan Sonneratia alba. Tingkat keberhasilan klasifikasi yang dicapai oleh sistem menggunakan metode K-Nearest Neighbour mencapai 93,75% dengan nilai k = 3. Hasil penelitian ini menunjukkan bahwa model KNN bisa mengklasifikasi jenis Avicennia alba dan Sonneratia alba dengan jelas, namun terdapat sedikit kesalahan dalam spesies Bruguiera gymnorrhiza dan Rhizophora apiculata karena memiliki kemiripan ciri tekstur antara satu dengan yang lain.
SISTEM KLASIFIKASI JENIS KERANG BERDASARKAN CITRA CANGKANG MENGGUNAKAN SUPPORT VECTOR MACHINE (SVM) Adinda; Seffi Rozahana; Nadia Ayu Putri Priyani; Apriliani Putri; Irsyad Widiansyah; Nurul Hayaty
Sustainable Vol 13 No 2 (2024): Jurnal Sustainable : Jurnal Hasil Penelitian dan Industri Terapan
Publisher : Fakultas Teknik Universitas Maritim Raja Ali Haji

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31629/hdnn8e89

Abstract

This study aims to build an automatic classification system to identify shellfish types based on shell images by applying the Support Vector Machine (SVM) algorithm. This study classifies three types of shellfish, namely blood cockles with the scientific name Anadara granosa, green mussels (Perna viridis), and scallops (Amusium pleuronectes). Image data was obtained from the internet and each class consisted of 150 images, so the total dataset was 450 images. The research stages include image pre-processing to normalize image size and quality, feature extraction to obtain visual information in the form of texture (with GLCM), color (RGB histogram), and shape (Canny edge detection), and classification using SVM. This application is web-based and functions to receive uploaded shellfish images from users and provide automatic shellfish type recognition results. The test results show that the developed SVM model is able to classify shellfish types with high accuracy, reaching 93,83%. This research is expected to contribute to the development of digital shellfish species identification technology to support the fields of fisheries, marine resource conservation, and marine biota research. 
Pembuatan Ecobrick sebagai Upaya Pengelolaan Sampah Plastik dan Pelestarian Lingkungan di Kelurahan Tanjung Uban Selatan, Kecamatan Bintan Utara, Kabupaten Bintan, Provinsi Kepulauan Riau Beizil Hakimi; Adinda Adinda; Andrean Bayu Pratama; Apriliani Putri; Dela Afrilia; E. Refal Driyatama Putra; Fera Mardiani; Jelaine Yuli Nesia Sinaga; Natasya Cahya Anjani
Jurnal Pengabdian Masyarakat Waradin Vol. 5 No. 3 (2025): September : Jurnal Pengabdian Masyarakat Waradin
Publisher : Sekolah Tinggi Ilmu Ekonomi Pariwisata Indonesia Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56910/wrd.v5i3.797

Abstract

Plastic waste continues to be one of the most pressing environmental problems due to its persistence, excessive use in daily life, and difficulty in decomposition. In many communities, including Tanjung Uban Selatan Village, unmanaged plastic waste accumulates in the environment, contributing to pollution and health risks. This community service activity aims to introduce and implement ecobricks as a simple yet effective solution to manage plastic waste. Ecobricks are not designed to destroy plastic but to recycle and repurpose it into useful and even marketable products. The process of making ecobricks requires no special expertise or significant costs, as the primary material is household plastic waste. The activity involved socialization, practical workshops, and guidance for residents on how to properly produce ecobricks. Results from the program show that residents were able to collect and process previously unmanaged plastic waste into solid, reusable building blocks. These ecobricks have potential applications for creating furniture, decorative items, and even small-scale construction, thereby providing both environmental and economic value. Beyond reducing plastic waste, the initiative also fosters community awareness about sustainable waste management practices and promotes environmental responsibility. In conclusion, the introduction of ecobricks in Tanjung Uban Selatan Village demonstrates that simple innovations can empower communities to transform environmental challenges into opportunities for sustainability and income generation.