Claim Missing Document
Check
Articles

Found 2 Documents
Search

Performance of Transition Metal Supported Al2O3 Coated on Honeycomb Catalysts and Its Segmentation on Exhaust Gasses Oxidation Buwono, Haris Puspito; Wicaksana, Hangga; Hartono, Moh; Waluyo, Joko; Daroini, Moch. Fauzun; Muslim, Ilham Taufik; Machida, Masato
Automotive Experiences Vol 7 No 1 (2024)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.10686

Abstract

The oxidation of carbon monoxide (CO) and unburnt hydrocarbons (HC) under segmented honeycomb catalysts was investigated using actual exhaust gas mixtures from a gasoline-fueled internal combustion engine of a motorcycle. The honeycomb catalysts were prepared through a wet process, resulting in four types coated with transition metals (Cu, Cr, Fe, and Ni) supported on Al2O3. The oxidation of CO and HC was monitored using an exhaust gas analyzer across a range of air-to-fuel ratios (AFR), from lean to rich, under stationary conditions. The results demonstrate that the honeycomb catalysts effectively decreased CO and HC concentrations in the exhaust gas. Among the transition metal oxide honeycomb catalysts, Cr and Ni exhibited high CO and HC conversion rates, surpassing those observed with Cu. The average CO and HC conversion calculations, spanning from lean to rich air-to-fuel ratios, were consistent with the actual conversion rates achieved. Furthermore, the study investigated the effect of honeycomb segmentation on CO and HC conversion. Surprisingly, the catalytic performance of Cr and Ni remained high even with longer gaps in the honeycomb. Interestingly, the conversion of CO and HC over the iron oxide honeycomb catalyst increased as the gap in the honeycomb became longer. This is likely due to an increase in the gap size and enhanced re-mixing of reactants (CO, HC, and O2) caused by recirculation. Thus, this study provides valuable elucidation on the potential application of segmented honeycomb catalysts for reducing CO and HC emissions in exhaust gases.
PEMODELAN DINAMIKA FLUIDA PADA FUEL INJECTOR MOTOR BENSIN 4 LANGKAH Khambali, Khambali; Fadhilah, Intan; Hartono, Moh; Farida, Nike Nur
Otopro Vol 20 No 2 Mei 2025
Publisher : Universitas Negeri Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26740/otopro.v20n2.p38-43

Abstract

This study aims to model fluid dynamics in the fuel injector of a four-stroke gasoline engine, with a focus on the relationship between fluid pressure and flow rate. The size of the fuel droplet is a key factor that affects combustion efficiency. Droplet size can be controlled through the regulation of injection speed and pressure. In this study, data on injection speed and pressure were collected using an injector tester, injector plunger, and fuel pump tester pressure gauge. The data show that at a higher injection speed (80 m/s), the fuel droplet diameter decreases more rapidly, producing smaller droplets and enhancing combustion efficiency. A similar pattern was observed at higher injection pressures (50 bar), where the droplets atomized more quickly, allowing for a more homogeneous air-fuel mixture. The results illustrate that both higher injection speed and pressure support a more efficient atomization process, reduce emissions, and improve engine efficiency. This study concludes that proper regulation of injection speed and pressure is crucial to optimize engine performance and reduce exhaust emissions. The findings can be used to design more efficient fuel injection systems and provide recommendations for the development of future injection technologies