Claim Missing Document
Check
Articles

Found 4 Documents
Search

Deteksi Seksisme Online menggunakan Support Vector Machine dan Naïve Bayes SHABIRA, DIYANK; MADENDA, SARIFUDDIN; SIAGIAN, AL HAFIZ AKBAR MAULANA; RIYANTO, SLAMET
MIND (Multimedia Artificial Intelligent Networking Database) Journal Vol 8, No 2 (2023): MIND Journal
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/mindjournal.v8i2.254-266

Abstract

AbstrakSeksisme online menjadi topik penting di media sosial yang mempengaruhi perkembangan internet, menimbulkan efek negatif dan menjadi ancaman serius bagi wanita yang menjadi target. Penelitian ini menggunakan machine learning untuk mendeteksi seksisme pada kalimat bahasa Inggris. Algoritma yang digunakan adalah Support Vector Machine dan Naive Bayes. Grid search diterapkan pada model untuk mencari kombinasi hyperparameter terbaik sehingga menghasilkan skor terbaik. Pelatihan dibagi menjadi dua tugas, yaitu (1) pelatihan model menggunakan data tanpa penanganan imbalanced dan (2) pelatihan model menggunakan data yang telah dilakukan SMOTE. Hasil dari pelatihan model menunjukkan model SVM+SMOTE menghasilkan rata-rata skor F1 terbaik paling tinggi yaitu sebesar 0,96. Pengujian menggunakan data uji menunjukkan model SVM+SMOTE menghasilkan skor F1 tertinggi, yaitu sebesar 0,90 dengan 1467 kalimat diklasifikasikan benar 'not sexist’, 47 kalimat ‘not sexist’ diklasifikasikan sebagai ‘sexist’, 189 kalimat ‘sexist’ diklasifikasikan benar dan 297 kalimat ‘sexist’ diklasifikasikan sebagai ‘not sexist’.Kata kunci: Seksisme, Deteksi, SVM, Naive Bayes, SMOTEAbstractOnline sexism has become a significant issue on social media, impacting internet progress and posing a serious threat to targeted women. This research uses machine learning to detect sexism in English sentences. The algorithms used are Support Vector Machine and Naive Bayes. Grid search is applied in the model to find the best combination of hyperparameters to produce the best score. The training is divided into two tasks: (1) training the model using unhandle the imbalanced data and (2) training the model using data with SMOTE. The training results show that the SVM+SMOTE model produces the highest average best F1 score is 0.96. The testing results show that the SVM+SMOTE model produces the highest F1 score is 0.90 with 1467 sentences correctly classified as 'not sexist', 47 'not sexist' sentences classified as 'sexist', 189 sentences classified as 'sexist' correctly and 297 'sexist' sentences were classified as 'not sexist'.Keywords: Sexism, Detection, SVM, Naive Bayes, SMOTE
Pemanfaatan dataset ukuran efek (effect size) untuk membangun alternatif model penelitian: Studi kasus minat konsumen membeli kendaraan listrik Putri, Rizkiya Anisyah; Yoganingrum, Ambar; Febriandirza, Arafat; Asmara, Indri Juwita; Rezaldi, Muhammad Yudhi; Tohari, Amin; Prasetyadi, Abdurrakhman; Indrawati, Ariani; Siagian, Al Hafiz Akbar Maulana
BACA: Jurnal Dokumentasi dan Informasi 2024: SPECIAL ISSUE - DATA IN BRIEF FOR REPOSITORI ILMIAH NASIONAL
Publisher : Direktorat Repositori, Multimedia, dan Penerbitan Ilmiah - Badan Riset dan Inovasi Nasional (BRIN Publishing)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/baca.2024.7782

Abstract

This study presents survey data from primary research papers containing effect size data and the number of respondents for several variables influencing consumer interest in purchasing electric vehicles. The survey utilized the Meta-Analytic Structural Equation Modeling (MASEM) approach. Data were collected in June 2021 using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) to identify 11 valid papers. This survey aimed to collect effect size values, such as path coefficients and standardized regression weights, from each of the eleven papers. The effect size values collected indicate the magnitude of the relationship between the variables: Attitude, Perceived Behavior Control, Subject Norm, Charging Infrastructure, Environmental Concern, Financial Benefit, External Environment, Marketing Mix, Willingness to Pay a Premium, Incentive Policy Measures, and Perceived Value, and their impact on interest in purchasing electric vehicles. The data set stored in this repository can serve as a reference for researchers and policymakers in developing models and examining the relationship between variables influencing electric vehicles adoption.
Design and Development of Spice Image Classification Application of Zingiberaceae Family with Rapid Application Development Method Nariswari, Fawnia Avissa; Gumay, Marliza Ganefi; Riyanto, Slamet; Siagian, Al Hafiz Akbar Maulana
Sistemasi: Jurnal Sistem Informasi Vol 13, No 5 (2024): Sistemasi: Jurnal Sistem Informasi
Publisher : Program Studi Sistem Informasi Fakultas Teknik dan Ilmu Komputer

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32520/stmsi.v13i5.3455

Abstract

In the culinary and health fields, spices are known to play a significant role. However, differentiating and identifying spices can often be challenging, especially for students or individuals with impaired sense of smell and taste. Our research builds upon our previous study, which involved designing a spice classification model using the pre-trained EfficientNetB0 model, yielding a testing accuracy of 48%. This study designs and develops an application for classifying images of spices from the Zingiberaceae family using the Rapid Application Development (RAD) method, aimed at addressing the difficulties of manual spice identification. Testing results using a black box technique indicate that the designed application performs well in basic tasks such as opening the interface without significant errors, responding promptly to functional buttons, and displaying user-inputted image results. However, in one of the testing scenarios, the application struggled to accurately classify certain spice images, indicating the need for improvements in the model used for more precise spice image classification.
Penyelarasan Large Language Model terhadap Respon Tidak Etis menggunakan Reinforcement Learning from Human Feedback (RLHF) Hilmi, Fadhilah; Fatyanosa, Tirana Noor; Siagian, Al Hafiz Akbar Maulana
Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer Vol 10 No 2 (2026): Februari 2026
Publisher : Fakultas Ilmu Komputer (FILKOM), Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

LLM atau Large Language Model telah menunjukkan kemampuan luar biasa dalam berbagai tugas pemrosesan bahasa alami, namun masih menghadapi tantangan terkait aspek etika dan keamanan output yang dihasilkan. Supervised Fine-Tuning yang umum digunakan untuk mengatasi masalah ini memiliki keterbatasan dalam hal fleksibilitas dan kemampuan generalisasi terhadap konteks baru. Oleh karena itu penelitian ini bertujuan mengimplementasikan metode Reinforcement Learning from Human Feedback untuk meningkatkan keselarasan model bahasa besar berbahasa Indonesia dengan preferensi dan nilai-nilai manusia. Implementasi RLHF dilakukan melalui tiga tahap: Supervised Fine-Tuning (SFT), pelatihan Reward Model, dan optimasi kebijakan menggunakan Proximal Policy Optimization (PPO). Hasil evaluasi menunjukkan bahwa Reward Model mencapai Pairwise Accuracy 0,80 dan Kendall’s Tau 0,60 dengan kemampuan generalisasi yang baik tanpa mengalami overfitting. Model hasil pelatihan PPO mencapai nilai Harmlessness 0,75 dengan Refusal Rate 0%, mengindikasikan bahwa model tidak lagi memberikan penolakan eksplisit seperti pada penelitian sebelumnya. Respon penolakan tersebut diganti dengan respons yang informatif, kontekstual, dan mengarahkan pengguna pada alternatif yang etis dan aman. Visualisasi SHAP mengonfirmasi perubahan karakteristik respons dari penolakan eksplisit dengan token seperti "tidak dapat menjawab" menjadi arahan informatif dengan token seperti "alternatif" dan "platform legal". Perbandingan dengan model baseline menunjukkan bahwa model hasil RLHF mampu menghasilkan respons dengan nilai Reward yang lebih tinggi pada sebagian besar skenario evaluasi. Meskipun demikian, model masih menunjukkan kelemahan dalam beberapa kasus, khususnya dalam menolak permintaan terkait informasi pribadi yang sensitif. Secara keseluruhan, implementasi RLHF berhasil meningkatkan keselarasan model dengan nilai-nilai keamanan dan kebermanfaatan tanpa mengorbankan kualitas interaksi yang konstruktif.