Claim Missing Document
Check
Articles

Found 34 Documents
Search

Utilizing GP 2 for Restaurant Recommendation Nitamayega; Gia Septiana Wulandari; Kemas Rahmat Saleh Wiharja
Indonesian Journal on Computing (Indo-JC) Vol. 9 No. 1 (2024): April, 2024
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2024.9.1.907

Abstract

The increasing diversity of food and beverage providers poses a challenge for people to find a restaurant that aligns with their preferences. Restaurant recommendation systems can address this problem by providing accurate and relevant suggestions. Although there are many previous studies have explored various recommendation methodologies, the utilization of knowledge graph implemented with GP 2 is still limited. Knowledge graphs can represent complex information in a structured way, while GP 2 is a graph-specific programming language that has a simple syntax. This research focuses on the implementation of a knowledge graph-based restaurant recommendation system with GP 2. The recommendation scheme built can provide the best accuracy, reaching 84.97%. This shows that the knowledge graph-based restaurant recommendation system with GP 2 can demonstrate the effectiveness of the system in providing accurate and relevant recommendations, showing the potential of knowledge graph and GP 2 for the development of recommendation systems in the future and being an effective solution to overcome recommendation problems.
SAFE NUSANTARA: A semi-automatic framework for engineering and populating a Nusantara Food Ontology Wiharja, Kemas Rahmat Saleh; Barawi, Mohamad Hardyman; Romadhony, Ade; Atastina, Imelda; Dharayani, Ramanti; Othman, Mohd Kamal
International Journal on Information and Communication Technology (IJoICT) Vol. 10 No. 2 (2024): Vol.10 No. 2 Dec 2024
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/ijoict.v10i2.1042

Abstract

Constructing a comprehensive food ontology, particularly for culturally diverse cuisines like Southeast East Asian (Nusantara), is hindered by the variability of online recipes and the scarcity of structured data. This research introduces SAFE Nusantara, a novel semi-automated system designed to build and populate a Nusantara food ontology by extracting relevant terms from diverse online sources in Indonesian and Malaysian languages. By leveraging a combination of techniques, including topic modelling, natural language processing, and knowledge graph techniques, SAFE Nusantara addresses the challenges of data format diversity and language specificity. The system has demonstrated significant improvements in the accuracy of food classification and has the potential to enhance food recommendation systems and cultural heritage preservation efforts.
Visualisasi Al- Qur’an Berbasis Knowledge graph dengan Ayat Sebagai Vertex Ayuningtyas, Shinta Cyntia; Wiharja, Kemas Rahmat Saleh; Nhita, Fhira
eProceedings of Engineering Vol. 10 No. 3 (2023): Juni 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak-Al- Qur’an merupakan sumber utama ajaran agama islam yang memiliki derajat keterkaitan yang sangat tinggi diantara ayat-ayatnya. Cara yang paling natural untuk menyajikan keterkaitan antara ayat ini adalah dengan menyajikan Al-Qur’an dalam format knowledge graph. Penelitianini akan mencoba menyajikan Al-Qur’an dalam format Knowledge graph dengan setiap ayat yang akan dijadikan sebagai node dan hubungan antar setiap ayat yang dijadikan relasi (busur) pada Knowledge graph. Sebelumnya sudah ada penelitian yang menyajikan Al- Qur’an dalam bentuk Knowledge graph dengan menggunakan Neo4j yang berjudul ‘Visualisasi Tematik Al- Qur’an berbasis Knowledge Graph’. Berbeda dengan penelitian sebelumnya pada penelitian ini akan digunakan TigerGraph untuk proses penyajian knowledge graph. Pada proses pengujian dilakukan 2 tahap yaitu membandingkan antara penelitian ini dengan penelitian sebelumnya dalam hal kelengkapan keterhubungan ayat yang dihasilkan. dan melibatkan penguji (ahli Al - Qur’an) untuk menguji kelengkapan keterhubungan ayat yang dihasilkan. Hasil yang didapatkan dari penelitian ini adalah pada pengujian tipe pertama data yang dapat dimunculkan oleh sistem ini memiliki hasil tema yang lebih lengkap daripada penelitian sebelumnya karena menggunakan dataset yang berbeda. Pada pengujian tipe kedua memiliki hasil keterkaitan yang berbeda saat divalidasi oleh penguji dikarenakan data yang dihasilkan sesuai dengan data yang berasal dari sumber dataset, perbedaan hasil keterkaitan ini dikarenakan adanya beberapa perbedaan pendefinisian kata atau kalimat tertentu dari pengertian bahasa arab saat diterjemahkan kedalambahasa indonesia.Kata kunci -Al – Qur’an , knowledge graph , visualisasi tematik ,tigergraph.
Prediksi Diagnosis Hepatitis B Virus Menggunakan Gated Graph Neural Network Fadhil Wisnu Ramadhan; Wiharja, Kemas Rahmat Saleh
LOGIC: Jurnal Penelitian Informatika Vol. 3 No. 1 (2025): September 2025
Publisher : Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/logic.v3i1.9855

Abstract

Hepatitis merupakan infeksi virus pada hati dan dapat menyebabkan komplikasi terhadap penyakit lain yang dialami oleh pasien. Diagnosis dini dan penanganan yang tepat sangat penting untuk mencegah progresi penyakit dan komplikasi lebih lanjut. Diperlukan sebuah sistem prediksi diagnosis hepatitis yang akurat untuk menangani dan mengatasi kemungkinan terjangkitnya seseorang akan hepatitis. Penelitian ini melakukan prediksi model Gated Graph Neural Network terhadap pilihan data Hepatitis UCI Machine Learning Repository. Pada penelitian ini dilakukan pemodelan dan penelitian model dengan dua model graph neural network lainnya dan menghasilkan evaluasi yang baik pada prediksi klasifikasi node Hepatitis, dengan menggunakan Gated Graph Neural Network model menunjukan nilai yang superior terhadap 2 metode lain yaitu GAT dan GCN. Dimana GGNN mendapatkan nilai Accuracy, Precision, dan Recall diatas 90%.