Claim Missing Document
Check
Articles

Found 6 Documents
Search

Pendekatan Ridge Regression untuk Analisis Kualitas Layanan dan Kepuasan Pelanggan Kereta Api Perkotaan: Studi Commuterline Solo-Yogyakarta Astuti, Septin Puji; Falantana, Alvian Anggi; Rizqiana, Zulfanita Dien; Kusumawardani, Rizky
Jurnal Transportasi Multimoda Vol. 21 No. 2 (2023): Desember
Publisher : Puslitbang Transportasi Antarmoda-Kementerian Perhubungan Republik Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25104/mtm.v21i2.2153

Abstract

Sekarang ini, kereta api menjadi moda transportasi yang prospective bagi para komuter. Oleh karena itu, jalur komuter dikembangkan di beberapa kota di Indonesia untuk menyediakan kendaraan umum bagi masyarakat. Kereta Rel Listrik (KRL) Solo-Yogyakarta adalah salah satu jalur komuter yang ada di Indonesia. Jalur ini mulai beroperasi sejak tahun 2021. Untuk meningkatkan layanan commuterline, penelitian ini dilakukan untuk mengidentifikasi hubungan antara kepuasan pelanggan dan kualitas layanan. Lima dimensi dari Kualitas Layanan yang diusulkan oleh Parasuraman digunakan dalam penelitian ini. ridge regression diterapkan dalam penelitian untuk mengatasi kolinearitas antarvariabel independennya. Hasilnya menunjukkan bahwa semua variabel kualitas layanan memiliki pengaruh signifikan terhadap kepuasan pelanggan KRL Solo-Yogyakarta. Variabel keberwujudan dan empati adalah dua variabel yang memiliki pengaruh terbesar terhadap kepuasan pelanggan KRL Solo-Yogyakarta yaitu sebesar 0,399 dan 0,326 untuk variabel keberwujudan dan empati.
Long Short Term Memory For Comparison Between Bank Syariah Indonesia And PT Bank Artos Indonesia Shares Rizqiana, Zulfanita Dien; Akhsan, Izzat Muhammad; Priyanto, Intan Indrasara; Maharani, Aninda Sabila
JISA(Jurnal Informatika dan Sains) Vol 7, No 2 (2024): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v7i2.2131

Abstract

The growth of the capital market in Indonesia has increased from year to year. Based on data from the Indonesia Central Securities Corporation (KSEI), there has been an increase in investor growth in the capital market by 2.34%, mutual funds by 2.44%, and shares by 1.34% until August 2024. The demographic of individual investors in the capital market is dominated by Generation Z who are younger than from 30 years as much as 55.07% in August 2024 (KSEI, 2024). Shares are a form of investment that has the potential for large profits but with small risks. One sector that Gen Z is interested in investing in is the financial sector. The aim of this research is to compare the share prices of Bank Syariah Indonesia and Bank PT Ban Artos Indonesia Tbk using a Neural Network with the Long Short Term Memory (LTSM) algorithm. The data used in this research is secondary data on BSI and PT Bank Artos Indonesia Tbk share prices taken from the investing.com website. The data period used is from 01 September 2021 – 01 September  2024. Based on the results of stock price forecasting using a Neural Network with the LTSM algorithm, RMSE value for both models is  for BSI 75.0757 and 91.795 for PT. Bank Artos Indonesia Tbk. A comparison of the predicted share prices of PT Bank Arto Indonesia Tbk and BSI shows that BSI's share price performance is superior to that of PT Bank Arto Indonesia Tbk.
Long Short Term Memory For Comparison Between Bank Syariah Indonesia And PT Bank Artos Indonesia Shares Rizqiana, Zulfanita Dien; Akhsan, Izzat Muhammad; Priyanto, Intan Indrasara; Maharani, Aninda Sabila
JISA(Jurnal Informatika dan Sains) Vol 7, No 2 (2024): JISA(Jurnal Informatika dan Sains)
Publisher : Universitas Trilogi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31326/jisa.v7i2.2115

Abstract

The growth of the capital market in Indonesia has increased from year to year. Based on data from the Indonesia Central Securities Corporation (KSEI), there has been an increase in investor growth in the capital market by 2.34%, mutual funds by 2.44%, and shares by 1.34% until August 2024. The demographic of individual investors in the capital market is dominated by Generation Z who are younger than from 30 years as much as 55.07% in August 2024 (KSEI, 2024). Shares are a form of investment that has the potential for large profits but with small risks. One sector that Gen Z is interested in investing in is the financial sector. The aim of this research is to compare the share prices of Bank Syariah Indonesia and Bank PT Ban Artos Indonesia Tbk using a Neural Network with the Long Short Term Memory (LTSM) algorithm. The data used in this research is secondary data on BSI and PT Bank Artos Indonesia Tbk share prices taken from the investing.com website. The data period used is from 01 September 2021 – 01 September  2024. Based on the results of stock price forecasting using a Neural Network with the LTSM algorithm, RMSE value for both models is  for BSI 75.0757 and 91.795 for PT. Bank Artos Indonesia Tbk. A comparison of the predicted share prices of PT Bank Arto Indonesia Tbk and BSI shows that BSI's share price performance is superior to that of PT Bank Arto Indonesia Tbk.
The Implementation of AI and Immersive Technology in E-Commerce: The Role of Customer Engagement as a Mediating Variable Aliyah, Kisti Nur; Rizqiana, Zulfanita Dien
Relevance: Journal of Management and Business Vol. 7 No. 1 (2024): (June-Issue)
Publisher : UIN Raden Mas Said Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22515/relevance.v7i1.9124

Abstract

The headway of information and communication technology has led to significant changes in various industries, particularly in e-commerce. The integration of artificial intelligence (AI) and immersive technologies such as augmented reality (AR) and virtual reality (VR) has created new opportunities for e-commerce to improve customer experiences. This study analyzes the effects of implementing AI and immersive technology in e-commerce, focusing on customer engagement as a mediating factor. A sample of 99 participants was examined and analyzed using PLS-SEM by SmartPLS 4 software, and the findings indicate that AI and immersive technology have a positive, significant impact on online purchase intention. Customer engagement cannot mediate the relationship between artificial intelligence and online purchase intention. However, it does mediate the relationship between immersive technology and online purchase intention. Keywords: Artificial Intelligence; Immersive technology; Customer Engagement; Purchase Intention; e-commerce
Pendekatan Ridge Regression untuk Analisis Kualitas Layanan dan Kepuasan Pelanggan Kereta Api Perkotaan: Studi Commuterline Solo-Yogyakarta Astuti, Septin Puji; Falantana, Alvian Anggi; Rizqiana, Zulfanita Dien; Kusumawardani, Rizky
Jurnal Transportasi Multimoda Vol 21 No 2 (2023): Desember
Publisher : Sekretariat Badan Kebijakan Transportasi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25104/mtm.v21i2.2153

Abstract

Sekarang ini, kereta api menjadi moda transportasi yang prospective bagi para komuter. Oleh karena itu, jalur komuter dikembangkan di beberapa kota di Indonesia untuk menyediakan kendaraan umum bagi masyarakat. Kereta Rel Listrik (KRL) Solo-Yogyakarta adalah salah satu jalur komuter yang ada di Indonesia. Jalur ini mulai beroperasi sejak tahun 2021. Untuk meningkatkan layanan commuterline, penelitian ini dilakukan untuk mengidentifikasi hubungan antara kepuasan pelanggan dan kualitas layanan. Lima dimensi dari Kualitas Layanan yang diusulkan oleh Parasuraman digunakan dalam penelitian ini. ridge regression diterapkan dalam penelitian untuk mengatasi kolinearitas antarvariabel independennya. Hasilnya menunjukkan bahwa semua variabel kualitas layanan memiliki pengaruh signifikan terhadap kepuasan pelanggan KRL Solo-Yogyakarta. Variabel keberwujudan dan empati adalah dua variabel yang memiliki pengaruh terbesar terhadap kepuasan pelanggan KRL Solo-Yogyakarta yaitu sebesar 0,399 dan 0,326 untuk variabel keberwujudan dan empati.
Detection and forecasting of housing price bubbles in Indonesia, Malaysia, and Singapore Suryati, Suryati; Rizqiana, Zulfanita Dien
Indonesian Journal of Islamic Economics Research Vol 5, No 2 (2023): Indonesian Journal of Islamic Economics Research
Publisher : Fakultas Ekonomi dan Bisnis Islam UIN Salatiga

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18326/ijier.v5i2.9783

Abstract

Houses are commodities to fulfill basic human needs, so the demand tends to continually increase. The research aims to assess the potential for a housing price bubble and to forecast house prices in the future. The data used in this study are secondary data from three countries, Indonesia, Malaysia, and Singapore. The method used to detect a housing bubble involves comparing the data of the House Price Index with the Consumer Price Index. The observations show that the trend in house prices in Malaysia and Singapore continues to increase each year. Indonesia exhibits a fluctuating trend in house prices. The highest value of Malaysia's housing bubble ratio is 1.94 in the 2nd quarter of 2020. Based on the ARIMA modeling results, the forecasting of the House Price Index in Indonesia, Malaysia, and Singapore shows a positive trend.