Claim Missing Document
Check
Articles

Found 23 Documents
Search

PEMODELAN TINGKAT KUALITAS AIR DI KOTA PONTIANAK DENGAN MENGGUNAKAN MULTIVARIATE GEOGRAPHICALLY WEIGHTED REGRESSION Kusnandar, Dadan; Debataraja, Naomi Nessyana; Utari, Shindy
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 15 No 3 (2021): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (600.308 KB) | DOI: 10.30598/barekengvol15iss3pp493-502

Abstract

Ketersediaan air bersih dan sanitasi yang layak merupakan salah satu tujuan dalam Sustainable Development Goals. Kualitas air cenderung mengalami penurunan terutama di daerah permukiman akibat tercemar limbah dari hasil kegiatan manusia. Penyebab pencemaran air bisa jadi berbeda-beda di setiap lokasi pengamatan, sehingga faktor letak geografis perlu dipertimbangkan pada proses pengambilan keputusan. Multivariat Geographically Weighted Regression digunakan untuk mengatasi adanya pengaruh heterogenitas spasial dalam data yang disebabkan oleh perbedaan kondisi lokasi yang satu dengan lokasi lain. Tujuan dari penelitian ini adalah menentukan model dan faktor-faktor apa saja yang berpengaruh terhadap kualitas air di Kota Pontianak. Data yang digunakan pada penelitian ini adalah data kualitas air di Kota Pontianak sebanyak 42 titik sampel lokasi. Variabel responnya terdiri dari Y1 (COD) dan Y2 (TDS), sedangkan untuk variabel prediktor terdiri dari X1 (warna), X2 (pH), X3 (kandungan zat besi), dan X4 (kesadahan). Hasil penelitian menunjukkan bahwa variabel yang mempengaruhi COD adalah warna, sedangkan variabel TDS dipengaruhi oleh warna dan kesadahan.
MULTI-STATE MODEL FOR CALCULATION OF LONG-TERM CARE INSURANCE PRODUCT PREMIUM IN INDONESIA Perdana, Hendra; Satyahadewi, Neva; Kusnandar, Dadan; Tamtama, Ray
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 16 No 4 (2022): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (487.771 KB) | DOI: 10.30598/barekengvol16iss4pp1293-1302

Abstract

Long Term Care (LTC) insurance is a type of health insurance. One of the LTC products is Annuity as A Rider Benefit. This insurance provides benefits for medical care costs during the term and death benefits if the insured dies. This insurance product can be modeled with a multi-state model. The multi-state model is a stochastic process in which the subject can switch states at a specified number of states. This paper discusses the calculation of LTC insurance premiums with the Annuity as A Rider Benefit product using a multi-state model for critically ill patients in Indonesia. The state used consisted of eight states, namely healthy, cancer, heart disease, stroke, died from the illness from each disease, and died from others. The premium calculation also utilized Markov chain transition probabilities. The data used were data on Indonesia's population in 2018, data on the prevalence of cancer, heart disease, stroke, and Indonesia's 2019 mortality table. The stages of this study were calculating the net single premium value, benefit annuity value, and insurance premium value. The case study was conducted on a 25 years old male in good health following LTC insurance with a coverage period of 5 years. It was known that the compensation value for someone who dies was IDR 100,000,000 and the interest rate used was 5%. The calculation results obtained an annual premium of IDR 5,308,915 which was then varied based on gender and varied interest. Insurance premiums for men were more expensive than for women since men had a greater chance of dying. Then, the higher the interest rate taken; the lower premium paid. This was because the interest rate is a discount variable.
CLUSTER MAPPING OF HOTSPOTS USING KERNEL DENSITY ESTIMATION IN WEST KALIMANTAN Cahyani, Cristy Framedia; Kusnandar, Dadan; Debataraja, Naomi Nessyana; Martha, Shantika
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 18 No 4 (2024): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol18iss4pp2353-2362

Abstract

Forest and land fires pose a recurring concern every year in Indonesia, often taking place in West Kalimantan Province, particularly during the dry season. This study aims to use the Kernel Density Estimation (KDE) to categorize the data of the hotspots in the province of West Kalimantan according to their density and to map the cluster level of the fire risks in the region. The data utilized in this study are secondary data obtained from the images of the MODIS (Moderate Resolution Imaging Spectroradiometer) instrument, which are available on firms.modaps.eosdis.nasa.gov and provided by NASA. The data focuses on hotspots dispersed across West Kalimantan province during 2020. The variables examined in the study were the confidence level (≥80%) of forest and land fire hotspots, the distance from each point to the nearest river, and the distance from each point to the nearest road. The kernel density estimation method with a Gaussian kernel function yielded clustering results into three distinct groups according to their vulnerability levels. Low vulnerability areas comprise Cluster 1, which consists of 127 points or 50.97% of the total hotspots. Medium vulnerability areas belong to Cluster 2, which has 47 points or 30.32% of the total. Cluster 3 includes high vulnerability locations, consisting of 29 points or 18.71% of the total. The most susceptible areas to forest and land fires are located within the Ketapang regency.
IMPLEMENTASI ALGORITMA K-MEDOIDS DAN CLUSTERING LARGE APPLICATIONS (CLARA) DENGAN OPTIMASI SILHOUETTE COEFFICIENT (Studi Kasus: Pengelompokan Indeks Pembangunan Manusia Berdasarkan Kabupaten/Kota di Indonesia) Ayuni, Anisa Putri; Kusnandar, Dadan; Martha, Shantika
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 13, No 2 (2024): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v13i2.76959

Abstract

Indeks Pembangunan Manusia (IPM) merupakan indikator untuk menilai keberhasilan pembangunan manusia yang ditinjau melalui kualitas hidup. Pengelompokan IPM perlu dilakukan untuk mengetahui derajat kesejahteraan dan kemajuan penduduk. Upaya yang bisa diterapkan untuk mengetahui  pengelompokan kabupaten/kota dengan nilai IPM tertinggi sampai terendah melalui analisis cluster. Analisis cluster yang dapat digunakan yakni algoritma K-Medoids dan CLARA. Algoritma K-Medoids dan CLARA memanfaatkan titik data untuk mewakili pusat cluster sehingga titik data yang terpilih dinamakan dengan medoids. Penelitian ini bertujuan untuk menganalisis hasil pengelompokan kabupaten/kota berlandaskan indikator pembentuk IPM menggunakan algoritma K-Medoids dan CLARA serta menganalisis perbandingan nilai silhouette coefficients optimal pada algoritma K-Medoids dan CLARA. Penelitian ini memanfaatkan data sekunder yang didapat dari Badan Pusat Statistik (BPS) tahun 2022. Variabel yang dianalisis mencakup umur harapan hidup ( ), harapan lama sekolah ( ), rata-rata lama sekolah ( ), dan pengeluaran per kapita ( ).   Pengelompokan dengan K-Medoids menghasilkan 358 kabupaten/kota yang tergabung dalam cluster dengan nilai IPM sedang dan 156 kabupaten/kota tergabung dalam cluster dengan nilai IPM tinggi. Sementara itu, pengelompokan dengan CLARA menghasilkan 426 kabupaten/kota yang tergabung dalam cluster dengan nilai IPM sedang dan 88 kabupaten/kota tergabung dalam cluster dengan nilai IPM tinggi. Algoritma CLARA merupakan algoritma yang optimal dengan nilai silhouette coefficient paling tinggi yakni sebesar 0,438.  Kata Kunci : IPM, CLARA, K-Medoids, Silhouette Coefficient.
PEMODELAN ARIMA-ANN PADA HARGA SAHAM BANK MANDIRI Fadhillah, Rahmi; Kusnandar, Dadan; Huda, Nur’ainul Miftahul
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 13, No 1 (2024): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v13i1.74370

Abstract

Saham adalah salah satu instrumen pasar keuangan yang paling populer. Dalam sektor perbankan, Bank Mandiri memiliki nilai aset saham terbesar, sehingga perlu dilakukan peramalan untuk kebijakan perusahaan. Pada penelitian ini harga saham Bank Mandiri mengandung komponen linier dan nonlinier. Metode peramalan yang digunakan adalah metode hybrid ARIMA-ANN gabungan model Autoregressive Integrated Moving Average (ARIMA) dan Artificial Neural Network (ANN). Penelitian ini bertujuan untuk memodelkan data dan mengetahui akurasi peramalan harga saham Bank Mandiri. Studi kasus yang digunakan adalah harga penutupan saham pada Bank Mandiri periode Januari 2021 hingga Desember 2022. Langkah pertama dilakukan pembentukan model ARIMA menggunakan data training dan menentukan residual ARIMA. Apabila residual ARIMA nonlinier, maka dapat dimodelkan dengan ANN. Hasil penelitian ini adalah model ARIMA (0,1,1) dan model ANN dengan 4 neuron pada hidden layer. Nilai MAPE training dan testing hybrid ARIMA"“ANN sebesar 1,32% dan 5,49%. Akurasi peramalan harga saham memilki nilai MAPE kurang dari 10% yang menunjukkan metode hybrid ARIMA-ANN tergolong sangat baik.  Kata Kunci : ARIMA, ANN, Harga Saham Bank Mandiri
PENDUGAAN DATA HILANG MENGGUNAKAN PERBANDINGAN IMPUTASI HOT-DECK DAN K-NEAREST NEIGHBOR Handayany, Indry; Kusnandar, Dadan; Andani, Wirda
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 12, No 4 (2023): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v12i4.68323

Abstract

Data hilang digambarkan sebagai keadaan nilai observasi yang kosong atau tidak memiliki nilai sehingga mengakibatkan hilangnya informasi pada sebuah kasus. Data hilang disebabkan kemungkinan pengukuran kurang lengkap, pencarian informasi yang sulit ditemukan, kesalahan atau kelalaian dalam menjalankan prosedur pengumpulan data atau bahkan responden yang menolak untuk menjawab pertanyaan dalam suatu survei. Hal tersebut mengakibatkan berkurangnya informasi penting yang diakibatkan dari data hilang. Oleh karena itu, perlu dilakukan imputasi data hilang untuk penanganan data hilang. Metode imputasi dapat dibedakan menjadi dua jenis, yaitu metode imputasi berbasis statistik dan metode imputasi berbasis machine learning. Metode imputasi Hot-Deck merupakan metode terbaik dalam imputasi berbasis statistik, sedangkan imputasi K-Nearest Neighbor merupakan metode terbaik dalam imputasi berbasis machine learning. Penelitian ini bertujuan menerapkan dan membandingkan hasil akurasi metode imputasi Hot-Deck dan K-Nearest Neighbor pada pendugaan data hilang pada Dapodik SMA Kota/Kab Pontianak dan Kubu Raya tahun 2023. Simulasi data hilang menggunakan mekanisme Missing Completely At Random (MCAR) 5% pada masing-masing variabel. Nilai akurasi imputasi terbaik terdapat di imputasi K-Nearest Neighbor menggunakan parameter k=4 dengan nilai Root Mean Square Error (RMSE) sebesar 5,80 dan Mean Absolute Percentage Error (MAPE) sebesar 10,98%.  Kata Kunci: Dapodik, imputasi data, imputasi Hot-Deck, imputasi K-Nearest Neighbor
PEMODELAN REGRESI PANEL SPASIAL PADA TINGKAT PENGANGGURAN TERBUKA DI PROVINSI KALIMANTAN BARAT Wuri, Hastri Sastia; Kusnandar, Dadan; Martha, Shantika
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 13, No 1 (2024): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v13i1.74371

Abstract

Tingkat Pengangguran Terbuka (TPT) adalah persentase dari jumlah pengangguran terhadap angkatan kerja pada suatu daerah. Penelitian ini bertujuan untuk mengetahui model yang sesuai dan menganalisis faktor yang mempengaruhi tingkat pengangguran terbuka untuk Kabupaten/Kota pada Provinsi Kalimantan Barat. Data pada penelitian ini menggunakan lima variabel yaitu TPT, TPAK, IPM, APS, dan RLS. Langkah-langkah pada penelitian ini dimulai dengan melakukan identifikasi pada data panel menggunakan 2 uji yaitu uji chow dan hausman dalam membandingkan model terbaik. Membuat pembobot spasial menggunakan Queen Contiguity dalam mendeteksi dependensi spasial melalui pengujian lagrange multiplier dalam mendapatkan efek spasial lag untuk model SAR-FE dan spasial error untuk model SEM-FE. Hasil pada penelitian menunjukkan model terbaik adalah model SAR-FE dengan nilai  sebesar 86,4% dengan model yang terbentuk .Pada model didapatkan faktor yang mempengaruhi TPT untuk Kabupaten/Kota  di Provinsi Kalimantan Barat yaitu tingkat partisipasi angkatan kerja dan indeks pembangunan manusia.  Kata Kunci: Data Panel, Panel Spasial, Tingkat Pengangguran Terbuka
PERBANDINGAN KLASTER K-MEANS DAN K-MEDIAN PADA DATA INDIKATOR KEMISKINAN KABUPATEN/KOTA DI PROVINSI KALIMANTAN BARAT Riswanda, Giovani Parasta; Kusnandar, Dadan; Imro’ah, Nurfitri
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 12, No 6 (2023): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v12i6.71551

Abstract

Metode k-means ialah pengklasteran non-hirarki yang sering dipakai, dengan memkai rataan yang jadi pusat klasternya, dan k-median ialah pengklasteran non-hirarki yang memakai nilai median sebagai pusat klaster. Studi ini tujuannya guna membandingkan metode k-means dan k-median. Data yang dipakai ialah data indikator kemiskinan Kabupaten/Kota di Provinsi Kalimantan Barat, selanjutnya lakukan pengujian multikolinieritas dengan melihat nilai VIF  10. Bila nilai VIF setiap variabel  10 maka tidak alami multikolieritas pada data dan data bisa dipakai untuk pengklasteran. Sesudah didapat hasil pengklasteran memakai metode k-means dan k-median, lakukan perbandingan memakai nilai varians. Hasil dari pengklasteran k-means didapat klaster pertama 4 anggota dan klaster ke-dua 10 anggota. Sedangkan hasil pengklasteran k-median didapat klaster pertama 5 anggota dan klaster ke-dua 9 anggota. Berdasarkan nilai varians didapat bahwa metode k-means dengan nilai varians yakni 0,38 lebih baik dibanding k-median dengan nilai varians yakni 0,55.  Kata kunci: Kemiskinan, K-means, K-median
PENERAPAN ALGORITMA MODIFIED K-NEAREST NEIGHBOR (MK-NN) DALAM KLASIFIKASI KELULUSAN MAHASISWA (Studi Kasus: Prodi Statistika Universitas Tanjungpura) Aipassa, Ezra Amarya; Kusnandar, Dadan; Imro’ah, Nurfitri
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 13, No 1 (2024): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v13i1.74062

Abstract

Salah satu pencapaian mahasiswa dalam meraih gelar sarjana adalah dengan lulus tepat waktu. Namun, tidak semua mahasiswa mampu menyelesaikan waktu studinya dengan tepat waktu. Suatu teknik yang memanfaatkan fungsi dari klasifikasi data mining diperlukan untuk memperoleh informasi dari data guna memprediksi kelulusan mahasiswa. Penelitian ini menggunakan algoritma Modified K-Nearest Neighbor (MK-NN) dalam klasifikasi kelulusan mahasiswa. Algoritma MK-NN merupakan pengembangan dari metode K-Nearest Neighbor (KNN) dimana dalam proses MK-NN menambah dua tahapan yaitu validitas dan weight voting. Penelitian ini bertujuan untuk menerapkan algoritma MK-NN dan mendapatkan nilai akurasi terbaik dalam klasifikasi kelulusan mahasiswa berdasarkan K-Optimal. Variabel dependen yang digunakan yaitu status kelulusan mahasiswa  serta variabel independen (X) yang digunakan yaitu IPK semester 1  hingga IPK semester 4 (  dan SKS semester 1  hingga SKS semester 4 ). Langkah-langkah dalam penelitan ini adalah mengumpulkan data lulusan mahasiswa Program Studi Statistika Universitas Tanjungpura angkatan 2013-2018 sebanyak 186 data. Setelah itu, mendeskripsikan data menggunakan statistik deskriptif, lalu men-normalisasi seluruh variabel (X), selanjutnya mencari K-Optimal menggunakan 10-fold cross validation, menghitung jarak euclidean antardata training yang kemudian divalidasi dan menghitung jarak euclidean data training dan data testing, hasil perhitungan jarak tersebut akan dimasukkan beserta nilai validasi data training pada perhitungan weight voting yang selanjutnya akan diklasifikasikan menggunakan algorima MK-NN. Sebanyak 130 data digunakan sebagai data training dan 56 data digunakan sebagai data testing. Hasil penelitian menunjukkan bahwa 49 data testing diprediksi dengan tepat, sedangkan tujuh data tidak tepat diprediksi sehingga akurasi yang diperoleh sebesar 87,5% dengan K-Optimal=9.  Kata kunci: akurasi, validitas, weight voting
PERBANDINGAN METODE ARIMA DAN NNAR UNTUK MERAMALKAN SUHU UDARA DI KOTA PONTIANAK Yusril, Alqaida; Kusnandar, Dadan; Andani, Wirda
BIMASTER : Buletin Ilmiah Matematika, Statistika dan Terapannya Vol 13, No 2 (2024): Bimaster : Buletin Ilmiah Matematika, Statistika dan Terapannya
Publisher : FMIPA Universitas Tanjungpura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26418/bbimst.v13i2.77243

Abstract

Kenaikan suhu global yang tinggi menyebabkan terjadinya perubahan iklim di Indonesia. Pontianak merupakan salah satu kota yang merasakan dampak langsung dari perubahan iklim dan akan sangat sulit dikendalikan jika tidak bisa memprediksi cuaca yang tidak menentu. Penelitian ini bertujuan untuk meramalkan suhu yang akurat dengan membandingkan metode Autoregressive Integrated Moving Average (ARIMA) dan Neural Network Autoregressive (NNAR). Penelitian ini dilakukan pada data suhu udara dengan mengolah data menggunakan metode ARIMA kemudian dilanjutkan metode NNAR. Kedua metode tersebut dipilih metode terbaik berdasarkan hasil nilai MAPE terkecil untuk melakukan peramalan pada data rata-rata suhu di Kota Pontianak di bulan Januari 2023. Data yang digunakan dalam penelitian ini merupakan data sekunder rata-rata suhu harian di Kota Pontianak sebanyak 365 data dari tanggal 1 Januari 2022 - 31 Desember 2022 yang diperoleh dari BMKG di Kota Pontianak. Hasil penelitian menunjukkan model NNAR (17,8) memiliki nilai MAPE sebesar 2,7% lebih kecil dari pada nilai MAPE model ARIMA (1,0,0) yaitu sebesar 2,9% dan hasil peramalan pada bulan Januari 2023 dengan model NNAR (17,8) menunjukkan suhu udara di Kota Pontianak cenderung turun dan naik setiap harinya dengan suhu tertingginya sebesar 27,66℃ dan suhu terendahnya sebesar 26,91℃.Kata Kunci : Peramalan, ARIMA, NNAR, Suhu Udara