Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : JAIS (Journal of Applied Intelligent System)

Analysis of Inter-Subject and Session Variability using Brain Topographic Map Setiawan, Fachruddin Ari; Pradana, Dio Alif; Nandang, Iim
(JAIS) Journal of Applied Intelligent System Vol. 9 No. 1 (2024): Journal of Applied Intelligent System
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jais.v9i1.10051

Abstract

The study described investigates the application of Brain-Computer Interface (BCI) technology, focusing on Motor Imagery (MI) signals which enable individuals to control movements through mental visualization. A major challenge in this field is accurately distinguishing between different movements, particularly when dealing with data from multiple subjects and recording sessions, known as inter-subject and inter-session variability. To address this, the authors employ the Wavelet Packet Transform-Common Spatial Patterns (WPT-CSP) method to enhance the resolution of MI signals. They visualize the results using Brain Topographic Maps (Topomaps) to depict brain activity during MI tasks, facilitating the analysis of variability across subjects and sessions. Utilizing dataset 2a from the Brain-Computer Interface Competition (BCIC) IV, the study demonstrates the efficacy of this approach in identifying variability patterns. This research holds promise for improving BCI technology applications in various domains, and future work could explore refining signal processing techniques and validation on larger datasets. Topomap.
Pneumonia Detection on X-rays Image using YOLOv8 Model Hyperastuty, Agoes Santika; Pradana, Dio Alif; Widayani, Aisyah; Putra, Fadli Dwi; Mukhammad, Yanuar
(JAIS) Journal of Applied Intelligent System Vol. 9 No. 2 (2024): Journal of Applied Intelligent System
Publisher : LPPM Universitas Dian Nuswantoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/jais.v9i2.10865

Abstract

Pneumonia is an acute inflammatory disease of lung tissue. It is usually caused by microorganisms such as bacteria, fungi and viruses. The young children are particularly vulnerable to this illness. Report in 2019 shows that pneumonia kills almost 2,000 children under the age of five every day worldwide and affects over 800,000 children under the age of five annually. Analyzing the chest X-ray results of the patient's body is one method of diagnosing pneumonia. Therefore, this research was done to deploy a deep learning to identify the healthy and pneumonia affected lungs from chest X-ray images in order to aid in the diagnosing process. This research was done by using 2000- chest X-ray dataset—of which 1500 pneumonia lung data and 500 normal lung data. The computer vision model YOLOv8 is used in this study. The accuracy results from the training process were 56.15% in the pneumonia class and 92.03% in the normal class. Wether in the testing process yielded an average value of 0.482 (48, 2%) for the pneumonia class and 0.675 (67,5%) for the normal class. From these results, there are promising possibilities for developing a pneumonia detection system using YOLO in the future.