Romadhan, Muhammad Despriansyah
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Molecular Docking Study of Gingkgo biloba Compounds as Potential Inhibitors of SARS-CoV-2 Afladhanti, Putri Mahirah; Romadhan, Muhammad Despriansyah; Hamzah, Haidar Ali; Putri, Safa Nabila; Angelica, Ellen Callista
SCRIPTA SCORE Scientific Medical Journal Vol. 4 No. 1 (2022): SCRIPTA SCORE Scientific Medical Journal
Publisher : Talenta Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32734/scripta.v4i1.8399

Abstract

COVID-19 pandemic caused by SARS-CoV-2 is a challenge for researchers to find effective drugs for this disease. Previous research had identified the role of Mpro, TMPRSS2, RdRp, and ACE2 which were useful as promising drug targets to inhibit SARS-CoV-2. This study aims to identify the potential compounds derived from Ginkgo biloba as potential SARS-CoV-2 inhibitors using a molecular docking study. A total of twenty-one compounds of Ginkgo biloba and comparative drugs were used in this study. The materials were downloaded from rcsb for protein targets and pubchem for comparative drugs and compounds. In this study, Lipinski rule of five using Swiss ADME web tool was used. Moreover, toxicity analysis using admetSAR 2.0 online test also used to predict toxicological profile of compounds. Dockings were carried out on Mpro, TMPRSS2, RdRp, and ACE2 protein targets by AutodockTools 1.5.6 and Autodock Vina. The visualization of molecular interaction was carried out by Discovery Studio v16. Nine compounds met the criteria as drug-like components and were safe. Docking results showed that ginkgolide-C and bilobetin showed strong molecular interactions to all protein targets compared to the comparative drugs and other compounds. In RdRp, ginkgolide-C showed the highest binding energy with -12.7 kcal/mol. Moreover, in TMPRSS2, ACE2 and Mpro, bilobetin also showed the highest binding energy with -12.7, -9.7 and -10 kcal/mol, respectively. Ginkgolide-C and bilobetin have the potential to be developed as SARS-CoV-2 inhibitors. Therefore, in vitro and in vivo investigations are needed to bring these compounds to the clinical setting.
Etlingera elatior Compounds as Anticancer Agents of Breast Cancer Through Inhibition of Progesterone Receptor: An In Silico Study Afladhanti, Putri Mahirah; Hamzah, Haidar Ali; Romadhan, Muhammad Despriansyah; Putri, Safa Nabila; Angelica, Ellen Callista; Theodorus, Theodorus
Indonesian Journal of Cancer Chemoprevention Vol 14, No 2 (2023)
Publisher : Indonesian Society for Cancer Chemoprevention

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14499/indonesianjcanchemoprev14iss2pp94-104

Abstract

Breast cancer is the leading cause of cancer-related death in women globally. Progesterone receptor (PR) is known as the prime example of receptors amenable to targeted breast cancer drug therapy. Etlingera elatior is an herbal plant that has been renowned to have anticancer effect. This study aimed to identify the potential compounds derived from Etlingera elatior as anticancer agents of PR in breast cancer using molecular docking method. This study used fifteen compounds from Etlingera elatior along with lonaprisan as the comparative drug. The PR was downloaded from RCSB, whereas compounds and lonaprisan were from Pubchem. The drug-likeness test based on Lipinski’s rule of five was conducted using SwissADME. Toxicity analysis using admetSAR 2.0 was used to predict toxicological profile of the compounds. Compounds and lonaprisan were docked on PR using AutoDock tools 1.5.6 and AutoDock Vina 1.1.2. Molecular interactions were visualized by Discovery Studio v16. A total of nine compounds met the criteria as drugs based on drug-likeness and toxicity tests. All nine compounds except caffeic acid and vanillic acid had higher binding affinities on PR compared with lonaprisan. Ergosterol peroxide exhibited the highest binding affinity on PR with values of -9.8 kcal/mol. Moreover, ergosterol peroxide-PR interaction had thirteen hydrophobic bonds and a hydrogen bond with amino acid residues were found in the active site of PR. Most of the compounds found in Etlingera elatior have the potential to be anticancer agents of PR in breast cancer with ergosterol peroxide being the most potential compound. Further in vitro and in vivo research are needed.Keywords: breast cancer, ergosterol peroxide, Etlingera elatior, progesterone receptor, in silico.