Abdikerimova, Gulzira
Unknown Affiliation

Published : 5 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 5 Documents
Search

Fire detection using deep learning methods Bayegizova, Aigulim; Abdikerimova, Gulzira; Kaliyeva, Samal; Shaikhanova, Aigul; Shangytbayeva, Gulmira; Sugurova, Laura; Sugur, Zharkynay; Saimanova, Zagira
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp547-555

Abstract

Fire detection is an important task in the field of safety and emergency prevention. In recent years, deep learning methods have shown high efficiency in solving various computer vision problems, including detecting objects in images. In this paper, monitoring wildfires was considered, which allows you to quickly respond to them and prevent their spread using deep learning methods. For the experiment, images from the satellite and images from the FireWatch sensor were taken as initial data. In this work, the deep learning algorithms you only look once (YOLO), convolutional neural network (CNN), and fast recurrent neural network (FastRNN) were considered, which makes it possible to determine the accuracy of a natural fire. As a result of the experiments, an automated fire recognition algorithm using YOLOv4 deep learning methods was created. It is expected that the results of the study will show that deep learning methods can be successfully applied to detect fire in images. This may lead to the development of automated monitoring systems capable of quickly and reliably detecting fire situations, which will help improve safety and reduce the risk of fires.
Detection of heart pathology using deep learning methods Naizagarayeva, Akgul; Abdikerimova, Gulzira; Shaikhanova, Aigul; Glazyrina, Natalya; Bekmagambetova, Gulmira; Mutovina, Natalya; Yerzhan, Assel; Tanirbergenov, Adilbek
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6673-6680

Abstract

In the directions of modern medicine, a new area of processing and analysis of visual data is actively developing - a radio municipality - a computer technology that allows you to deeply analyze medical images, such as computed tomography (CT), magnetic resonance imaging (MRI), chest radiography (CXR), electrocardiography and electrocardiography. This approach allows us to extract quantitative texture signs from signals and distinguish informative features to describe the heart's pathology, providing a personified approach to diagnosis and treatment. Cardiovascular diseases (SVD) are one of the main causes of death in the world, and early detection is crucial for timely intervention and improvement of results. This experiment aims to increase the accuracy of deep learning algorithms to determine cardiovascular diseases. To achieve the goal, the methods of deep learning were considered used to analyze cardiograms. To solve the tasks set in the work, 50 patients were used who are classified by three indicators, 13 anomalous, 24 nonbeat, and 1 healthy parameter, which is taken from the MIT-BIH Arrhythmia database.
Analysis of the emotional coloring of text using machine and deep learning methods Abdykerimova, Lazzat; Abdikerimova, Gulzira; Konyrkhanova, Assem; Nurova, Gulsara; Bazarova, Madina; Bersugir, Mukhamedi; Kaldarova, Mira; Yerzhanova, Akbota
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 3: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i3.pp3055-3063

Abstract

The presented scientific article is a comprehensive study of machine learning and deep learning methods in the context of emotion recognition in text data. The main goal of the study is to conduct a comprehensive analysis and comparison of various machine learning and deep learning methods to classify emotions in text. During the work, special attention was paid to the analysis of traditional machine learning algorithms, such as multinomial naive Bayes (MNB), multilayer perceptron (MLP), and support vector machine (SVM), as well as the use of deep learning methods based on long short-term memory (LSTM). The experimental part of the study involves the analysis of different data sets covering a variety of text styles and contexts. The experimental results are analyzed in detail, identifying the advantages and limitations of each method. The article provides practical recommendations for choosing the optimal method depending on the specific tasks and context of the application. The data obtained is important for the development of intelligent systems that can effectively adapt to the emotional aspects of interaction with users. Overall, this work makes a significant contribution to the field of emotion recognition in text and provides a basis for further research in this area.
Detection of lung pathology using the fractal method Abdikerimova, Gulzira; Shekerbek, Ainur; Tulenbayev, Murat; Sultanova, Bakhyt; Beglerova, Svetlana; Dzhaulybaeva, Elvira; Zhumakanova, Kamshat; Rysbekkyzy, Bakhytgul
International Journal of Electrical and Computer Engineering (IJECE) Vol 13, No 6: December 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v13i6.pp6778-6786

Abstract

Currently, the detection of pathology of lung cavities and their digitalization is one of the urgent problems of the healthcare industry in Kazakhstan. In this paper, the method of fractal analysis was considered to solve the task set. Diagnosis of lung pathology based on fractal analysis is an actively developing area of medical research. Conducted experiments on a set of clinical data confirm the effectiveness of the proposed methodology. The results obtained show that fractal analysis can be a useful tool for early detection of lung pathologies. It allows you to detect even minor changes in the structure and texture of lung tissues, which may not be obvious during visual analysis. The article deals with images of pathology of the pulmonary cavity, taken from an open data source. Based on the analysis of fractal objects, they were pre-assembled. Software algorithms for the operation of the information system for screening diagnostics have been developed. Based on the information contained in the fractal image of the lungs, mathematical models have been developed to create a diagnostic rule. A reference set of information features has been created that allows you to create algorithms for diagnosing the lungs: healthy and with pathologies of tuberculosis. 
Soil erosion analysis based on machine learning method Bolsynbek, Mukhammed; Abdikerimova, Gulzira; Serikbayeva, Sandugash; Batyrkhanov, Ardak; Shrymbay, Dana; Taszhurekova, Zhazira; Zhidekulova, Gulkiz; Shraimanova, Gulmira
Bulletin of Electrical Engineering and Informatics Vol 14, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i6.10452

Abstract

Soil erosion poses a serious environmental and agricultural threat that undermines land productivity, sustainability, and ecosystem stability. This study develops a robust machine learning framework for predicting and analyzing soil erosion across diverse landscapes by integrating advanced remote sensing data, climate indicators, and soil characteristics. Spectral indices such as the normalized difference vegetation index (NDVI), moisture stress index (MSI), and surface albedo were employed to assess vegetation condition, moisture levels, and surface reflectance. The proposed model, based on the extreme gradient boosting (XGBoost) algorithm, classifies erosion stages with up to 99% accuracy, ranging from healthy land to severely degraded areas. The methodology includes comprehensive feature engineering, dataset preprocessing, and model evaluation. Furthermore, a comparative analysis with traditional models (USLE and RUSLE) highlights the superior predictive performance of the proposed approach. The findings offer valuable insights for sensor-based monitoring systems and cloud-based decision-support tools, supporting sustainable land use management, erosion risk mitigation, and effective soil conservation strategies.