Claim Missing Document
Check
Articles

Found 2 Documents
Search

Cloud based prediction of epileptic seizures using real-time electroencephalograms analysis Thahniyath, Gousia; Yadav, Chelluboina Subbarayudu Gangaiah; Senkamalavalli, Rajagopalan; Priya, Shanmugam Sathiya; Aghalya, Stalin; Reddy, Kuppireddy Narsimha; Murugan, Subbiah
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp6047-6056

Abstract

This study aims to improve the accuracy of epileptic seizure prediction using cloud-based, real-time electroencephalogram analysis. The goal is to build a strong framework that can quickly process electroencephalogram (EEG) data, extract relevant features, and use advanced machine learning algorithms to predict seizures with high accuracy and low latency by taking advantage of cloud platforms' computing power and scalability. The main objective is to provide patients and their caregivers with timely notifications so that they may control epilepsy episodes proactively. The goal of this project is to improve the lives of people with epilepsy by reducing the impact of seizures and improving treatment results via real-time analysis of EEG data. Cloud computing also allows the suggested seizure prediction system to be more accessible and scalable, meaning more people worldwide could benefit from it. This section discusses the results from five separate datasets of patients with epileptic seizures who underwent EEG analysis with the following details as frontopolar (FP1, FP2), frontal (F3, F4), frontotemporal (F7, F8), central (C3, C4), temporal (T3, T4), parieto-temporal (T5, T6), parietal (P3, P4), occipital (O1, O2), time (HH:MM:SS).
A low-cost localization method in autonomous vehicle by applying light detection and ranging technology Kannan, Raju Jagadeesh; Amru, Malothu; Muthumarilakshmi, Surulivelu; Jeyapriya, Jeyaprakash; Aghalya, Stalin; Muthukumaran, Dhakshnamoorthy; Murugan, Subbiah
Indonesian Journal of Electrical Engineering and Computer Science Vol 36, No 3: December 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v36.i3.pp1739-1749

Abstract

The autonomous platform uses global positioning system (GPS) to localize the vehicle. In addition, light detection and ranging (LIDAR) and the high precision camera help to identify the turns in the road. The proposed system can help to determine the road turns with higher accuracy without utilizing LIDAR and high-precision camera technology. This research aims to implement a cost-effective simultaneous localization system that can reduce the cost by half for any autonomous vehicle. The existing system is more complex due to the inclusion of LIDAR technology. In contrast, the proposed approach uses beacon communication between vehicles and infrastructure and long-range (LoRa) for vehicle-to-vehicle (V2V) and vehicle to infrastructure (V2I) communication. The simulation result illustrates that the proposed approach provides better performance.