Shangytbayeva, Gulmira
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Fire detection using deep learning methods Bayegizova, Aigulim; Abdikerimova, Gulzira; Kaliyeva, Samal; Shaikhanova, Aigul; Shangytbayeva, Gulmira; Sugurova, Laura; Sugur, Zharkynay; Saimanova, Zagira
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp547-555

Abstract

Fire detection is an important task in the field of safety and emergency prevention. In recent years, deep learning methods have shown high efficiency in solving various computer vision problems, including detecting objects in images. In this paper, monitoring wildfires was considered, which allows you to quickly respond to them and prevent their spread using deep learning methods. For the experiment, images from the satellite and images from the FireWatch sensor were taken as initial data. In this work, the deep learning algorithms you only look once (YOLO), convolutional neural network (CNN), and fast recurrent neural network (FastRNN) were considered, which makes it possible to determine the accuracy of a natural fire. As a result of the experiments, an automated fire recognition algorithm using YOLOv4 deep learning methods was created. It is expected that the results of the study will show that deep learning methods can be successfully applied to detect fire in images. This may lead to the development of automated monitoring systems capable of quickly and reliably detecting fire situations, which will help improve safety and reduce the risk of fires.
Effective detection of breast pathology using machine learning methods Orazayeva, Ainur; Tussupov, Jamalbek; Shangytbayeva, Gulmira; Galymova, Assem; Zhunissova, Ulzhalgas; Tergeussizova, Aliya; Tleubayeva, Arailym; Kenzhebayeva, Zhanat
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 5: October 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i5.pp5593-5600

Abstract

This work is devoted to the research and development of methods for effectively identifying breast pathologies using modern machine learning technologies, such as you only look once (YOLOv8) and faster region-based convolutional neural network (R-CNN). The paper presents an analysis of existing approaches to the diagnosis of breast diseases and an assessment of their effectiveness. YOLOv8 and Faster R-CNN architectures are then applied to create pathology detection models in mammography images. The work analyzed and classified identified breast pathologies at six levels, taking into account different degrees of severity and characteristics of the diseases. This approach allows for more accurate determination of disease progression and provides additional data for more individualized treatment planning. Classification results at various levels can improve the quality of medical decisions and provide more accurate information to doctors, which in turn improves the overall efficiency of diagnosis and treatment of breast diseases. Experimental results demonstrate high accuracy and speed of image processing, providing fast and reliable detection of potential breast pathologies. The data obtained confirm the effectiveness of the use of machine learning algorithms in the field of medical diagnostics, providing prospects for the further development of automated systems for detecting breast diseases in order to improve early diagnosis and treatment efficiency.