Saimanova, Zagira
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Fire detection using deep learning methods Bayegizova, Aigulim; Abdikerimova, Gulzira; Kaliyeva, Samal; Shaikhanova, Aigul; Shangytbayeva, Gulmira; Sugurova, Laura; Sugur, Zharkynay; Saimanova, Zagira
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp547-555

Abstract

Fire detection is an important task in the field of safety and emergency prevention. In recent years, deep learning methods have shown high efficiency in solving various computer vision problems, including detecting objects in images. In this paper, monitoring wildfires was considered, which allows you to quickly respond to them and prevent their spread using deep learning methods. For the experiment, images from the satellite and images from the FireWatch sensor were taken as initial data. In this work, the deep learning algorithms you only look once (YOLO), convolutional neural network (CNN), and fast recurrent neural network (FastRNN) were considered, which makes it possible to determine the accuracy of a natural fire. As a result of the experiments, an automated fire recognition algorithm using YOLOv4 deep learning methods was created. It is expected that the results of the study will show that deep learning methods can be successfully applied to detect fire in images. This may lead to the development of automated monitoring systems capable of quickly and reliably detecting fire situations, which will help improve safety and reduce the risk of fires.
Application of deep learning methods for automated analysis of retinal structures in ophthalmology Kassymova, Akmaral; Konyrkhanova, Assem; Issembayeva, Aida; Saimanova, Zagira; Saltayev, Alisher; Ongarbayeva, Maral; Issakova, Gulnur
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i2.pp1987-1995

Abstract

This article examines a current area of research in the field of ophthalmology the use of deep learning methods for automated analysis of retinal structures. This work explores the use of deep learning methods such as EfficientNet and DenseNet for the automated analysis of retinal structures in ophthalmology. EfficientNet, originally proposed to balance between accuracy and computational efficiency, and DenseNet, based on dense connections between layers, are considered as tools for identifying and classifying retina features. Automated analysis includes identifying pathologies, assessing the degree of their development and, possibly, diagnosing various eye diseases. Experiments are performed on a dataset containing a variety of images of retinal structures. Results are evaluated using metrics of accuracy, sensitivity, and specificity. It is expected that the proposed deep learning methods can significantly improve the automated analysis of retinal images, which is important for the diagnosis and monitoring of eye diseases. As a result, the article highlights the significance and promise of using deep learning methods in ophthalmology for automated analysis of retinal structures. These methods help improve the early diagnosis, treatment and monitoring of eye diseases, which can ultimately lead to improved healthcare quality and improved patient lives.