Claim Missing Document
Check
Articles

Found 5 Documents
Search

Reduce state of charge estimation errors with an extended Kalman filter algorithm El Maliki, Anas; Benlafkih, Abdessamad; Anoune, Kamal; Hadjoudja, Abdelkader
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp57-65

Abstract

Li-ion batteries (LiBs) are accurately estimated under varying operating conditions and external influences using extended Kalman filtering (EKF). Estimating the state of charge (SOC) is essential for enhancing battery efficiency, though complexities and unpredictability present obstacles. To address this issue, the paper proposes a second-order resistance-capacitance (RC) battery model and derives the EKF algorithm from it. The EKF approach is chosen for its ability to handle complex battery behaviors. Through extensive evaluation using a Simulink MATLAB program, the proposed EKF algorithm demonstrates remarkable accuracy and robustness in SOC estimation. The root mean square error (RMSE) analysis shows that SOC estimation errors range from only 0.30% to 2.47%, indicating substantial improvement over conventional methods. These results demonstrate the effectiveness of an EKF-based approach in overcoming external influences and providing precise SOC estimations to optimize battery management. In addition to enhancing battery performance, the results of the study may lead to the development of more reliable energy storage systems in the future. This will contribute to the wider adoption of LiBs in various applications.
Advanced particle swarm optimization for efficient and fast global maximum power point tracking under partial shading conditions El Moujahid, Yassine; El Harfaoui, Nadia; Hadjoudja, Abdelkader; Benlafkih, Abdessamad
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 4: August 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i4.pp3570-3579

Abstract

Partial shading (PS) is a common issue in photovoltaic systems (PVs), and it can significantly reduce the system's output power. This paper presents the advanced particle swarm optimization (APSO) algorithm. APSO is designed to alleviate the challenges posed by PS in PVs in from where of effectiveness and stability speed so that it works to achieve and maintain the global maximum power point (GMPP) under PS conditions. It leverages persistent variables to store and track system states and iterations; it also includes checks to ensure that the duty cycle remains within specified bounds facilitating more effective optimization. Additionally, APSO optimizes solar panel duty cycles and velocities to converge toward an optimal solution to improve overall power generation efficiency and settling time. The results evaluation involves testing the performance of photovoltaic panels under three different shading scenarios and comparative analysis against recent Heuristic-optimization-based GMPP techniques, this study and comparative analyses demonstrate APSO's effectiveness and superiority in terms of high efficiency that reaches 99.85% and fast settling time of GMPP at less than 0.01 second across all test cases. APSO presents a promising solution for maximizing PV power output in the presence of partial shading.
Optimizing photovoltaic systems performance under partial shading using an advanced cuckoo search algorithm Benlafkih, Abdessamad; El Moujahid, Yassine; Hadjoudja, Abdelkader; El Harfaoui, Nadia; Said, El-Bot; El Idrissi, Mohamed Chafik
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 2: June 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i2.pp845-857

Abstract

Partial shading negatively impacts power output in photovoltaic systems (PVs), causing multiple local maximum power points (LMPP) instead of a single global maximum power point (GMPP). The cuckoo search (CS) technique utilizes the maximum power point tracking (MPPT) technique to extract the global maximum power (GMP) from shaded PVs. CS is a metaheuristic technique that has gained widespread recognition. Moreover, the CS algorithm is associated with several challenges, including a failure rate, long response time, and noticeable oscillations during steady-state operation. To address these limitations, our proposed advanced cuckoo search (ACS) algorithm is designed to overcome the shortcomings of the standard CS algorithm. The algorithm iteratively evaluates individual solar panels and collectively explores the solution space using levy flight operations. Persistent variables are used to store and track the current state and previous iterations. Where the duty cycles of the solar panels are optimally set to enhance the overall power generation efficiency. We also evaluate and analyze the results obtained from the performance of our proposed technique and compare them to the performance of the four most recent CS optimization techniques. for all test cases, the tracking efficiency was improved to 99.98% with a fast-settling time of <44 ms.
Estimating the state of charge of lithium-ion batteries using different noise inputs El Maliki, Anas; Anoune, Kamal; Benlafkih, Abdessamad; Hadjoudja, Abdelkader
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 15, No 1: March 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v15.i1.pp8-18

Abstract

State of charge estimation (SOC) is the most significant functionality of a vehicle's battery management system (BMS). The methods for this estimation are conventionally oriented towards model-based methods. As part of this paper, we introduce a first order equivalent circuit estimation approach known as the Thevenin model, along with an extended Kalman filter (EKF) approach to accurately estimate the SOC. We then deploy and simulate it in MATLAB by using a reference load profile from the new European driving cycle (NEDC). Afterwards, the simulation results are reviewed based on various initial noise values, and the results are compared to those of other EKF algorithms. According to the results, SOC estimation accuracy has significantly increased as a result of the improvements made. Specifically, the root-mean-square error decreased from 0.0068 to 0.0020.
Rapid and efficient maximum power point tracking in photovoltaic systems with modified fuzzy logic approach Said, El-bot; Moujahid, Yassine El; Mohamed, Chafik El Idrissi; Benlafkih, Abdessamad
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 4: August 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i4.pp3621-3631

Abstract

Photovoltaic systems (PVs) often face difficulties in maximizing their output power and maintaining a stable DC-DC connection voltage, especially under variable weather conditions (VWC). The power produced by photovoltaic panels is very sensitive to changes in sunlight and temperature, which vary throughout the day. This paper presents the design of an intelligent controller approach based on modified fuzzy logic (MFLC), adapted to enable the most effective maximum power point tracking (MPPT) of a photovoltaic solar module. The technique reduces delays in MPPT and sustains efficiency despite changing environmental conditions. A DC-DC boost converter is connected to the photovoltaic solar module, which in turn is linked to a load, and computer simulations using MATLAB/Simulink were used to validate the method's effectiveness. Results reveal that the MFLC controller significantly enhances the efficiency of the PVs, achieving improvements of up to 97.05%, with a rapid settling time of less than 10 milliseconds across all test scenarios.